
Neural Networks 87 (2017) 109–121
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Fast learning method for convolutional neural networks using
extreme learning machine and its application to lane detection
Jihun Kim, Jonghong Kim, Gil-Jin Jang, Minho Lee ∗

School of Electronics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 10 April 2016
Received in revised form 11 November
2016
Accepted 2 December 2016
Available online 10 December 2016

Keywords:
Convolutional neural network
Extreme learning machine
Advanced driver assistance system
Lane detection

a b s t r a c t

Deep learning has received significant attention recently as a promising solution tomany problems in the
area of artificial intelligence. Among several deep learning architectures, convolutional neural networks
(CNNs) demonstrate superior performance when compared to other machine learning methods in the
applications of object detection and recognition. We use a CNN for image enhancement and the detection
of driving lanes onmotorways. In general, the process of lane detection consists of edge extraction and line
detection. A CNN can be used to enhance the input images before lane detection by excluding noise and
obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires
considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs
using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network
weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning
time while producing accurate results with minimal training data. A conventional ELM can be applied
to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN
framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and
effectively learn network weights while maintaining performance. Experimental results confirm that the
proposed method is effective in reducing learning time and improving performance.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

According to the ‘‘European Accident Research and Safety Re-
port 2013’’, more than 90% of driving accidents are caused by hu-
man error (Truck, 2013). Recently, more cars have been equipped
with advanced driver assistance systems (ADASs) to assist drivers
in recognizing dangerous situations. Among the functions of the
ADAS, lane departure warning and lane change assistance are
most relevant to these situations (Tapia-Espinoza & Torres-Torriti,
2013).

In general, lane detection consists of preprocessing and detec-
tion. A simple and well-known method for detecting lanes is ran-
dom sample consensus (RANSAC) (Kim, 2008), which can identify
straight lines by combining scattered andneighboring points in im-
age scenes. However, RANSAC frequently becomes unreliable as
complexity and illumination in road scenes for instance in cases
with shadows, occlusions, and curves. To address these difficult
cases, convolutional neural networks (CNNs) (LeCun, Bottou, Ben-
gio, & Haffner, 1998) have been implemented to enhance input

∗ Corresponding author.
E-mail address:mholee@gmail.com (M. Lee).

http://dx.doi.org/10.1016/j.neunet.2016.12.002
0893-6080/© 2016 Elsevier Ltd. All rights reserved.
images and extract regions of interest (ROIs) before performing
RANSAC (Kim & Lee, 2014).

A CNN is an effective solution in classification and recognition
problems for large datasets, such as ImageNet. In contrast with
other learning algorithms, a CNN has characteristics such as a local
receptive fields and shared weights. A receptive field exploits the
sparse connectivity of neurons to only a local region of an adjacent
layer. In sharedweights, replicated units create a featuremapusing
shared parameters and increase robustness, which is efficient in
lane detection problems that include different road environments.

The integration of CNN and RANSAC leads to an acceptable re-
sult with complex road scenes. However, several problems remain
in lane detection tasks. The first problem is the limited training
data available for complex road scenes. Complex road environ-
ments are quite different from normal and highway road cases.
Further, substantial time is necessary to create ground truth for
the training data. Moreover, a CNN requires additional learning
time owing to the large number of parameters it requires. In gen-
eral, a backpropagation method (Rumelhart, Hinton, & Williams,
1988) is used to optimize the weights between the layers of a CNN,
which requires excessive iteration steps to get a desired accuracy
for training. In particular, when the number of layer increases,
training time increases dramatically. However, most recent CNN

http://dx.doi.org/10.1016/j.neunet.2016.12.002
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.12.002&domain=pdf
mailto:mholee@gmail.com
http://dx.doi.org/10.1016/j.neunet.2016.12.002

110 J. Kim et al. / Neural Networks 87 (2017) 109–121
studies are concerned with improving performance, not training
speed. It is common to perform offline training and to speed up
training with the support of GPUs. When faced with large datasets
including tremendous input dimensions, for example the ILSVRC
(Russakovsky et al., 2015) dataset, training can take several days
or weeks to achieve the best performance (Simonyan & Zisser-
man, 2014). Therefore, we consider training speed to be a valuable
property in cost effective computing environment without GPU.
Thus, this paper applies an extreme learning machine (ELM), be-
cause training all the weights in a single layer is accomplished in
a single operation, significantly reducing training times. Further-
more, the ELM is not only suitable for large dataset but also it
is effective for small training dataset. When we encounter a lack
of data, using a CNN is very difficult, because of the amount of
data a conventional CNN requires for training. Therefore, this pa-
per modifies the structure of the CNN to exploit the advantages of
the ELM. Through this modification, the CNN can be trained with
a smaller dataset while maintaining accurate performance in ex-
tracting features from complex scenes and reducing training time
significantly. Sincewe focus entirely on such non-trivial situations,
we end up applying our method over a small dataset. ELM offers
faster convergence speed and better optimization performance for
small data and efficiently optimizes a network by using pseudo in-
verse calculation irrespective of training size. Though not demon-
strated in this work, ELM can easily scale well to larger datasets
and can produce faster convergence.

ELM (Huang, Zhu, & Siew, 2006) is a new learning method
for single-hidden-layer neural networks. It uses random mapping
from the input to the hidden layer and a single matrix inversion to
determine the optimalweights from thehidden to the output layer.
Unlike with backpropagation, there is no iterative adaptation of
weight learning; hence, training time can be reduced dramatically.
However, it cannot be applied to deep neural networks because
it requires a fixed input and target; however, in deep neural
networks, themajority of hidden layers are composed of unknown
latent variables.

In this paper, we suggest a new learning framework that
combines the CNN and ELM. In the proposedmethod, an additional
layer is inserted between the convolutional and subsampling
layers. The newly added layer in the last fully connected nodes
of the CNN is optimized by conventional ELM algorithms and
other additional layers are updated by amodified backpropagation
learning rule derived from the original ELM learning algorithm.
Exploiting the extremely fast learning speed of the ELM, we
can reduce computation time dramatically and obtain superior
performance.

In Section 2, we describe the related work in lane detection
and how a CNN is applied to an ADAS. We present the details of
the proposed combined architecture and the learning algorithm
derivations in Section 3. In Section 4, we provide experimental
results evaluating the performance of the proposed method on a
lane detection task. Finally, we detail our conclusions in Section 5.

2. Related works

2.1. Lane detection

For practical applications, the common approach to lane de-
tection follows these steps: (1) preprocessing, (2) detection, and
(3) tracking. Preprocessing typically consists of image smooth-
ing, edge detection, ROI setting, and perspective matching. Image
smoothing is used to reduce camera noise; methods include Gaus-
sian filtering (Shihavuddin, Ahmed, Munir, & Ahmed, 2008) and
median smoothing (Wen, Yang, Song, & Jia, 2008). Edge detection
is required because lanes are represented in different colors in-
cluding white, yellow, and blue. Sobel (He, Rong, Gong, & Huang,
2010) and Canny (Zhou et al., 2010) edge detectors are used pri-
marily in lane detection. Many papers set ROIs to reduce compu-
tation time because real-time application is required for an ADAS.
Some papers use perspective analysis to improve detection. Per-
spective analysis can be carried out using lane slopes and vanishing
point (Kreucher, Lakshmanan, & Kluge, 1998); IPM (Inverse Per-
spective Mapping) is one such method (Bertozzi & Broggi, 1996).
Furthermore, IPM is sometimes used to improve curve fitting. In
lane detection, two methods are generally used for this purpose.
The first is the Hough transform (Assidiq, Khalifa, Islam, & Khan,
2008), which can detect the line with the greatest value in an edge
image that includes many lines. Thus, the selected line is assumed
to be the lane. RANSAC (Aly, 2008) is a model-fitting algorithm
that reduces the effect of outliers in model fitting. For tracking,
Kalman (Voisin, Avila, Emile, Begot, & Bardet, 2005) and particle
filters (Apostoloff & Zelinsky, 2003) are typically used.

The latest lane detection methods focus on special cases or
combine techniques from various fields, instead of increasing
performance in simple cases such as a highway with clear lane
markers on a bright day. For example, lane detection using
Canny edge detection and the Hough transform is popular and
has achieved high performance in such simple cases. However,
its performance is limited by changing illumination, noise, and
curves. Thus, the latest lane detection algorithms have focused on
cases of reduced illumination (Son, Yoo, Kim, & Sohn, 2015) and
improved curve fitting (Niu, Lu, Xu, Lv, & Zhao, 2015). Moreover,
the integration of lane detection and other methods, such as
lane detection using GPS signals (Lee, Im, Heo, & Jee, 2015), the
combination of camera and Light Detection and Ranging (LiDAR)
data (Shin, Shim, & Kweon, 2015), and cooperative map-based
data (Kim et al., 2015) are widely used in ADAS technology.
However, most of these approaches are computationally extensive
or have other limitations. LiDAR requires much more expensive
sensors than a single camera, so it is generally used in very
complicated applications such as autonomous vehicles. Also, GPS
signals are not accurate enough to find lanes, so various error
correction techniques with extensive computation are required.
In map-based approaches, maps change frequently as a result of
construction, weather, and a variety of other factors. Thus, it is
necessary to update the map periodically in order to be useful in
real-world situations.

2.2. ADAS implementation using CNNs

Deep learning has been adopted in most recent machine learn-
ing and artificial intelligence problems to improve performance.
There have been attempts to apply deep learning to ADAS applica-
tions because many ADAS implementations require detecting ob-
jects in the road, such as vehicles, lanes, traffic signs, lane marks,
and traffic signals from camera image inputs. Among many deep
neural network architectures, the CNN is more commonly used
than any other deep learningmethods such as deepbelief networks
(DBN) and deep auto-encoder. In ADAS applications, the CNN has
been applied to detecting traffic signs (Sermanet & LeCun, 2011)
and vehicles (Zheng, Wang, & Zeng, 2015), in road mark recog-
nition (Chen, Chen, Shi, & Huang, 2015), and in road estimation
(Brust, Sickert, Simon, Rodner, & Denzler, 2015). The aforemen-
tioned cases are related to detection and recognition tasks. How-
ever, the goal of the proposedmethod is input image enhancement,
which can be applied to many other applications. In the result-
ing images, unnecessary, impeditive information in road images
(fences, other vehicles, shadows, and myriad other obstacles) is
suppressed. In addition, the lane shapes become clearer for subse-
quent detection. In our framework, we use the RANSAC algorithm
to detect lanes in the enhanced images.

J. Kim et al. / Neural Networks 87 (2017) 109–121 111
Fig. 1. CNN structure.
2.3. CNN applications with ELM

There are several previous works that attempt to apply an
ELM to CNN structure. One such study focuses on traffic sign
recognition (Zeng, Xu, Fang, & Zhao, 2015), using a CNN as a feature
extractor with average image subtraction as preprocessing and
then applying an ELM as the classifier after training the CNN.
Additionally, CNNs have been used for feature extraction and
applied to the public datasets, MNIST (Guo & Ding, 2015), CIFAR-
10, and NORB (Lee & Park, 2015). One study tried to apply a CNN
extractor and ELM classifier to age prediction from face images
(Gurpinar, Kaya, Dibeklioglu, & Salah, 2016). All of these papers
applied ELM as the classifier of the CNN structure and achieved
better results compared to fully connected network classifiers.
From this investigation, we can easily determine that ELMs are
useful when applied to CNN structure. However, these approaches
only applied ELMs in the final classification layer because ELMs
always require target information for training, and the only target
we generally have is the desired output. Our proposed method
addresses this point. Unlike previous works, we include ELM
layers not only as output, but also as hidden layers. To solve the
target problem of hidden layers, we used backpropagation and
estimated target values from hidden error. There have also been
ELM-related approaches that develop an ELM with autoencoder
structure. One such example is an autoencoder stacking approach
with label pixels (Tissera & McDonnell, 2016). The authors applied
an ELM to an autoencoder with the same input and output
except for the label pixels included in the output image. Another
approach uses ELM autoencoder structure for multi-modal feature
extraction (Wei, Liu, Yan, & Sun, 2016). The ELM autoencoder is
used for pre-trainingmulti-modal features; by using a shared layer,
classification is carried out with an ELM. There is another ELM
approach that changes CNN pre-training with an ELM (Yoo & Oh,
2016). The input, output, and kernel shape are transformed in
order to train with an ELM algorithm and pre-train the CNN kernel
with autoencoder structure. These ELM approaches are very much
related to autoencoder structure. However, our proposed model is
based on CNN structure without pre-training.

3. Proposed method

3.1. Extreme learning convolutional neural networks (ELCNNs)

A CNN is constructed by alternately stacking convolutional
layers (simple cells) and subsampling layers (complex cells). The
convolutional layers of the CNN act as a local receptive field;
the subsampling layers mimic complex cells’ functions in data
abstraction by extracting maximum or average responses from
the lower convolutional layers. After passing through a number
of convolutional and subsampling layer pairs, outputs are passed
to a fully connected multilayer perceptron (MLP) to finally classify
the patterns or infer the desired values. In classification problems,
the target signals at the output layer are usually binary-encoded
class labels or real values. The errors to the target are propagated
backward to the lower layers of the network to minimize the error
in the CNN. In this paper, our network consists of two subsampling
layers, three convolutional layers, and two fully connected layers,
as illustrated in Fig. 1.

In the case of the conventional backpropagation method,
weights are optimized to minimize the error between the network
output and the given targets using optimization methods such
as stochastic gradient descent learning (Robbins & Monro, 1951),
Quasi-Newton methods (Shanno, 1970), and the weight conjugate
gradient method (Møller, 1993). Most optimization methods are
based on gradient descent learning, which gradually adjusts the
weights in the opposite direction of the gradient; these may easily
fall into local minima because the learning is done locally.

ELM is a fast learning method for artificial neural networks
with single hidden layer; it replaces iterative backpropagation
learning with a single-step matrix inversion. The weight matrix
from the input nodes to the hidden nodes is obtained by random
initialization, and the weight matrix between the hidden and
output layers is updated by a closed-form equation.

Fig. 2 presents the structure of the network architecture where
ELM learning can be applied. The conventional ELM can only be
applied to a single hidden layer perceptron structure. The input
is assumed to be a vector, expressed x = [x1, x2, . . . , xN] and
the target is another vector, t = [t1, t2, . . . , tN] whose elements
are binary or real for the classification or the inference problems,
respectively. The weight vector and scalar bias from the input
nodes to the hidden node, denoted bywi and bi, are set as random
values. The output from the hidden layer is computed by

hij = g

wi · xj + bi


= g


K

k=1

wikxk + bi


, (1)

wherewi and xk are the kth elements of weight vectorwi and input
vector x, respectively; and K is the dimension of the input vector.
For multiple training samples, it is more precise to use matrix
notation. We denote a set of N input samples as an N × K matrix,

X =

x1
...
xN

 . (2)

Then, the output at the hidden nodes is written as the following
matrix equation:

H (W, b,X) =

h11 · · · hM1
...

. . .
...

h1N · · · hMN



=

g (w1 · x1 + b1) · · · g (wM · x1 + bM)
...

. . .
...

g (w1 · xN + b1) · · · g (wM · xN + bM)

 , (3)

112 J. Kim et al. / Neural Networks 87 (2017) 109–121
Fig. 2. ELM structure: (a) Input in vector form, (b) an ELM in a three-layer network.
Fig. 3. Structure of the ELCNN.
whereM is the dimension of the output vector at the hidden layer.
The individual output at the topmost output layer can also be
represented by multiplying the weight vector and is assumed to
approximate the target as follows:

M
i=1

βjig

wi · xj + bi


= tjn, j = 1, . . . ,N, (4)

where βji is a weight from the hidden node i to the output node j.
The above equation can be expressed by the following simple

matrix formula:

Hβ = T, (5)

where T is a matrix for a set of N target vectors. IfH is nonsingular,
the optimal weight matrix β can be found with the following
pseudo-inversion operation:

β = HuT. (6)

The computation time required for training CNNs increases pro-
portionallywith the number of layers it contains, because the stan-
dard backpropagation algorithm is an iterative adaptation (He &
Sun, 2015). Hence, significantlymore computation is neededwhen
the network weights are not properly initialized. The advantage
of the ELM is that learning the weights between connected layer
pairs is mathematically well-defined by a deterministic pseudo-
inversion; hence, learning is achieved with considerably fewer
computations compared to standard backpropagation learning.
The overall procedure of the proposed method is illustrated in
Fig. 3. In the proposed CNN structure, there are two S-layers and
one fully connected layer. The network connection between one
S-layer and the higher level C-layer is replaced with an ELMwith a
single hidden layer, resulting in an increase in the number of layers.
The fully connected layer has the same structure as a conventional
CNN; however, we use the ELM algorithm for training.

Although ELM learning is fast and efficient, the output target
signal must exist in order to obtain the weight matrix from the
target values using a pseudoinverse operation. The output of the
fully connected layer is the target signal; hence, we can use Eq. (6)
without ambiguity. However, because in backpropagation learning
the output error is propagated through chained multiplication of
multi-level derivatives, no exact target value is available in the
mid-level layers. Similar to backpropagation, we borrow values of
the next C-layer as target signals. However, because we are not
directly addressing the actual target, the target should be found in
iterativemanner and the ELM should be updated for each iteration.
To begin, the ELM weights are randomly initialized. The input to
ELMi (i = 1, 2) is Ki which is a vector of the outputs of the current
S-layer, denoted by ys(i). Thus, the input to the next, c(i + 1)-layer
is defined as

xc(i+1) = gmat

gvec


ys(i)


· wELM(i)


, (7)

where gvec is a function that converts a two-dimensional (2D)
image to a one-dimensional vector and gmat is a reshaping function
from a vector to a 2D matrix. To define the target value, we use
backpropagation error, as illustrated in Fig. 4.

For the generated output y given the input vector x, we can
derive a cost function by

J =
1
2

||T − y||2 . (8)

Thus, the F-layer error signal is set by

δf =
∂ J

∂wf
=

W T δf+1


f ′

wf

, (9)

where W T is a weight vector at the corresponding layer and f ′(·)
is the derivative of the activation function. The backpropagation
formula for the fully connected F-layer is the same as that of the
conventional MLP and δf 1 is used to calculate backpropagation
error at the C3-layer. In C-layer cases, we must consider a
convolution operation and weights of kernels. Thus, the error of
the C-layer can be defined by

δc(i) =
∂ J

∂xc(i)
=


j=1

δyc(i)wj


f ′(w)

= (δyc(i) ∗ filp (w))f ′(w), (10)

where xci is the input map of the C th
i layer and yci is the result of

the convolution (f (xc(i) ∗w) = yc(i))with kernel weightw which is
randomly initialized fixed value. The backpropagation procedure is

J. Kim et al. / Neural Networks 87 (2017) 109–121 113
Fig. 4. ELCNN structure.
Fig. 5. Operation of ELM: (a) ELM1 and ELM2 cases, (b) ELM3 case.
derived by a convolutionwith flippedweights. Thus, the derivative
of kernels is given by

∂ J
∂wc

= δyc(i) ∗ xc(i). (11)

Backpropagation error calculation in the C and F layers is the same
as that of conventional CNNs. However, the backpropagation at
the S-layer is different because of the ELM-layer located between
the S-layer and C-layer. The weights in the ELM layers are not
updated with backpropagation learning; rather, other operations
such as inner product and vectorization are added to the training
procedure in the S-layers:

δs(i) = upsample

gmat


gvec


δc(i)


· w−1

ELM(i)


, (12)

where the function upsample is an inversion of pooling.
After backpropagation, we use the error of the convolutional

layers as target values for the ELM. Fig. 5(a) illustrates the ELM
update. The ELM layers are updated by combining forward and
backward information. To apply the ELM learning algorithm, the
target at the output must be defined. However, because a target
does not exist in the middle layers, we approximate the target at
layer i as

TELMi = xc(i+1) − aδc(i+1) + b, (13)

where xc(i+1) is the value of the next C-layer in the forward
process, δc(i+1) is the error of the next C-layer in backpropagation,
a is the weight factor for the desired output, and b is a bias.
According to the delta rule of backpropagation, the delta is
usually proportional to the amount of the error. In conventional
backpropagation, the delta is used to find the hidden target of
each layer based on the stochastic gradient descent method.
Training conventional CNN through backpropagation requires
many iterations to achieve the desired performance. However,
ELM can be trained with pseudoinverse calculation in only a few
epochs. For the training of ELM, a target value is required, so
in our proposed model, we need to estimate the hidden targets
of each ELM. Our proposed method estimates the hidden target
by Eq. (13) based on the backpropagation error. Because the
backpropagation error is proportional to the error between the
output of ELM and the hidden target of ELM, we can estimate the
hidden target. After hidden target estimation, ELM can be trained
with pseudoinverse calculation. In our proposed model, because
of the local minima problem, backpropagation error may not be
enough to find the hidden target. Therefore, we search the hidden
target in an iterativemanner. For convergence, unlike conventional
CNN, our proposed model requires only a few iterations by virtue
of the advantages of ELM learning. The forward equation of ELM at
the ith layer is thus given by

Kiβi = T i . (14)

If an inverse operation exists in Eq. (14), an optimal βi can be
calculated. Thus, we use a pseudoinverse matrix whose weight is
defined as

βi = Ku
i Ti, (15)

where u is the pseudoinverse operator. Fig. 5(b) illustrates ELM3,
which is identical to the conventional ELMbecause ELM3 is applied
to a fully connected output layer. The input of ELM3 is xf , obtained
by the output of the C3-layer. T is a vectorized target image that is
used as the target of ELM3 and H is the output of the F2-layer. β3

114 J. Kim et al. / Neural Networks 87 (2017) 109–121
Fig. 6. Structure of the ELM weight updates.

can be further calculated by

βi = Ku
i Ti. (16)

Thus, we can summarize the entire ELCNN process, which is
illustrated in Fig. 6:

1. Compute forward pass.
2. Compute error of convolutional layers using backpropagation.
3. Calculate target of ELM1 with respect to the backpropagated

error.
4. Calculate ELM1 weights to minimize the forward pass error.
5. Calculate target of ELM2 with respect to the backpropagated

error
6. Calculate ELM2 weights to minimize the forward pass error.
7. Repeat 2–6.
8. Calculate ELM3.
9. Repeat 1–8 if the error is smaller than a given threshold.
3.2. Lane detection using a CNN with ELM

3.2.1. Lane detection using RANSAC
Before detecting a lane, several preprocessing methods are

applied to obtain clearer lane images. In this paper, smoothing
and edge detection are used. Smoothing can reduce noise in the
camera image; we use a smoothed image that is obtained from a
5×5Gaussian smoothing function before edge detection. This step
reduces environmental noise and produces more reliable scene
information.

A lane is typically marked as a white line on a gray road. Hence,
an easy method for detecting lane is to use edge information.
For robust lane detection, the area surrounding the lane must
be suppressed. Hence, we use a hat-shaped kernel to strengthen
lane information while suppressing the surrounding area during
edge detection. Fig. 7(a) shows the hat-shaped kernel. The edge
image is calculated via a convolution of the lane image and this
kernel; the performance of this method is superior to several other
preprocessing methods. The result of edge detection in several
situations is displayed in Fig. 7(b).

After calculating the edges, lane detection is performed using
RANSAC. RANSAC is an estimation technique based on the principle
of hypothesis generation and verification. Given a model with
randomly selected edge points and assuming a line model, the
RANSAC algorithm determines the most likely candidate lines. We
set ROIs to reduce computational load; we set the candidate arrival
and departure points on the upper and lower ROI lines. Then, low-
value lines are set as outliers. Thus, an expectation model can be
calculated with the remaining high-value lines, and they define
the lane. When a road scene is complex, the selected point is not
likely to create a lane and the accuracy of the lane detection may
decrease.
Fig. 7. Kernel for edge detection and examples. (a) The kernel for edge detection. (b) (i) Fence and shadow image, (ii) fence and shadow image using edge detection, (iii)
night image, (iv) night image using edge detection, (v) tunnel image with changing light intensity, (vi) tunnel image with changing light intensity using edge detection.
Fig. 8. Example of lane detection method. The blue lines are the candidate arrival and departure lines. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

J. Kim et al. / Neural Networks 87 (2017) 109–121 115
Fig. 9. Flow chart of lane detection system.

We also set the candidate arrival and departure points on the
upper and lower ROI line because a lane typically resembles a
vertical shape from the inside of the car. Fig. 8 presents an example
ROI, candidate arrival and departure points, and the detected lane.

3.2.2. Enhanced lane detection using an ELCNN
A flow chart outlining the proposed method is presented in

Fig. 9. First, road images are captured by a camera while driving.
Image segmentation is performed to reduce environmental noise
and sensor distortion. In general, lanes are painted in different
colors compared with the road. If the road image changes
dynamically owing toweather conditions, brightness, or obstacles,
the captured video recordings may contain considerable noise,
which decreases lane detection accuracy. To alleviate the effects
of environmental changes before using RANSAC to detect lanes,
the CNN is applied to enhance road images by emphasizing lines
Fig. 11. Results of lane detection using RANSAC: (a) well-detected lane in a simple
image, (b) incorrect lane in a complex image.

Table 1
Number of training and test images of KNU dataset and Caltech dataset for different
complex lane images extracted from video clips.

Dataset Case Number of images
Train Test

KNU dataset
Case 1 200 115
Case 2 105 41
Case 3 136 34

Caltech dataset
Case 1 68 16
Case 2 42 10
Case 3 81 20

and suppressing noisy fragments. ELM algorithms are used to
efficiently learn the network weights. Lanes can be detected in the
enhanced images output by the ELCNN using RANSAC.

Lane detection accuracy using RANSAC is highly dependent on
road conditions. There are three cases in which RANSACmay fail to
detect lanes: (1) when more than two lines are detected, (2) when
the difference in lane locations between frames is excessively
large, and (3) when the difference in the positions of a vanishing
points detected using the left and right lines is too distant. Fig. 10
displays examples of the aforementioned three cases. In all three
cases, we use the proposed ELCNN before the RANSAC algorithm to
emphasize lane shapes and suppress the surrounding noise.

4. Experimental results

4.1. Experimental setup

Our proposed model extends previous work in lane detection
(Kim & Lee, 2014) and is based on LeNet (LeCun et al., 1998).
Fig. 10. Example of three cases: (a) there are three lane lines, (b) position of the lane, where xt,upper , xt−1, upper , and xt,lower , xt−1, lower in the x-axis direction are represented
upper and lower points of lane in t and t − 1 frame and Tupper and Tlower are threshold values at upper and lower positions of lane, respectively, (c) the vanishing point of the
lane, where Pt,vp is the vanishing point at (xt,vp, yt,vp) in t frame and Pt−1,vp is the vanishing point at (xt−1,vp, yt−1,vp) in t − 1 frame. Tvp is the threshold value of vanishing
point.

116 J. Kim et al. / Neural Networks 87 (2017) 109–121
Fig. 12. Simulation results: (a) original image, (b) edge image, (c) ELCNN output image, (d) RANSAC result after ELCNN.
Table 2
Performance evaluation in three conditions in two datasets comparing an ELM, a CNN with an ELM classifier, a
conventional CNN, and the ELCNN.

Dataset Case Method (%)
ELM CNN CNN with ELM classifier ELCNN

KNU database
Case 1 59.6 94.8 (±0.39) 96.1 (±0.30) 96.2 (±0.44)
Case 2 85.4 93.3 (±0.63) 95.0 (±1.20) 95.9 (±1.44)
Case 3 52.9 92.3 (±1.16) 94.8 (±1.40) 93.0 (±2.78)

Caltech dataset
Case 1 93.8 97.5 (±2.12) 97.5 (±2.32) 98.1 (±1.53)
Case 2 70.0 95.0 (±0.00) 100.0 (±0.00) 100.0 (±0.00)
Case 3 72.5 90.0 (±1.44) 95.5 (±2.45) 96.5 (±1.22)
Creating several kinds of lane data with corresponding ground
truth takes substantial time and it is difficult to find varied
situations because load state is mostly straightforward. Therefore,
we suffer from lack of training data. With a few data, recent
large CNN models are unsuitable, since they must be trained on
large datasets, such as the ILSVRC dataset (Russakovsky et al.,
2015), which consists of 1.2 million images. Unless there is a
lack of training data for the scale of the model, we may suffer
from overfitting, so we have chosen the baseline CNN model as
a smaller model that provides the best performance, as shown
in Table 3. As shown in Fig. 1, the baseline CNN model consists
of 3 convolutional layers and 2 subsampling layers; our proposed
ELCNN model includes the addition of 2 ELM layers and one ELM
classification output layer. The size of each convolutional kernel
is 5 × 5 and the convolution performs with a stride of 1. The
number of kernels is 6 for first layer, 20 for second, and 50 for
third. Since we are considering lane images, the shape of the input
images is a wide rectangle. Therefore, for subsampling, we also use
awide subregionwith size 8× 2 for the first subsampling layer and
4 × 2 for the second. The ELM layers are square matrices, in order
to make the shape of the ELM output the same as its input. Our
model resizes all input images 196× 32. After the first convolution
and subsampling, the size of the input is 24 × 14. To maintain
the same size of ELM output and input, ELM1 is 336 × 336 for a
24 × 14 input. Similarly, ELM2 is 25 × 25 for a 5 × 5 input. The
number of ELMweightmatrices is the same as the number of input
feature maps. The size of output layer ELM3 is 200 × 1500, which
is the same as a fully connected network. Finally, the reconstructed
output image is 100 × 15. The final output target image is the
ground truth lane image, which includes only two ground truth
lines. The target approximation parameter a is first set to 0.5. After
each iteration, a is reduced by a factor of 0.9 until the end of
training. The parameter b is set to zero.

4.2. Evaluation on the KNU database

The result of lane detection using the RANSAC algorithm is pre-
sented in Fig. 11. The results are highly dependent on the degree
of complexity of the input road scenes. If there is considerable
noise, such as fences, walls, or lights reflecting lights on wind-
shield, RANSAC-based lane detection can easily follow false lanes,
as indicated in Fig. 11(b).

To improve the accuracy of lane detection in complex road
scenes, we apply RANSAC to detect candidate lanes on the output
of the ELCNN. The results are displayed in Fig. 12. Because the
learning algorithm provides a candidate region for the lanes, noise
reduction results are obtained as indicated in Fig. 12(b). We apply
RANSAC again to the output of the ELCNN. Finally, we obtain the
detected actual lane. Note that the proposed method is robust to
changes in road environment, as indicated in Fig. 12(c).

We tested a conventional CNN on complex video clips and
compared the results with those of the proposed method. We
evaluated the performance of each method using lane detection
rate from these video clips. Table 1 shows the number of training
and test images for KNU and Caltech datasets. For the given
dataset, we randomly select the train and test data. We perform
each experiment 10 times with random weight initializations.
The performance evaluation method is inspired from Borkar
Amol’s paper (Borkar, Hayes, & Smith, 2012). Firstly, ground
truth on actual lane is defined manually from lane images
and the RANSAC algorithm is employed for lane detection. For
performance assessment, RANSAC-detected lanes are overlapped
with the ground truth and lane detection is taken successful if
the overlapping area is more than 50%. This criterion is applied
to all of our experiments. The results are presented in Table 2 and
Fig. 13. The ELM column is the result of a single hidden layer; CNN
is two hidden S-layers, two hidden C-layers, and a fully connected
network with a single hidden layer. The CNN was better than the
ELM in all cases except for KNU database case 3, owing to the
deeper layers; the ELCNN was superior to the conventional CNN.
The reason that the ELCNN was better than the conventional CNN
is because ELM learning guarantees a global minimum, whereas
gradient descent learningmay easily fall into local minima; ELCNN
results are closer to the global minimum. Also, applying ELM
classifier to trained CNN features was better than conventional
CNN. Comparing CNN with ELM classifier with ELCNN, ELCNN
outperformed the CNN with ELM classifier only except on Case 3
in the KNU database. Furthermore, the training time for the CNN
with ELM classifier is muchmore than that of the proposed ELCNN
because of many iterative steps for kernel optimization based on
the conventional gradient approach.

J. Kim et al. / Neural Networks 87 (2017) 109–121 117
Fig. 13. Results from the KNU dataset: (a) road images, (b) lane detection results.
4.3. Evaluation on the Caltech database

To provide a fair comparison of the proposed method with
other existing methods, we performed an evaluation on the
Caltech database (Aly, 2008), one of the popular databases for
lane detection and other vehicular vision applications. The Caltech
database was collected by the California Institute of Technology
for lane detection. This dataset includes four clips captured on
the streets of Pasadena: cordova1 with 250 frames, cordova2 with
406 frames, washington1 with 337 frames, and washington2 with
232 frames. In this experiment, we replaced the lane with non-
trivial situations with enhanced lane images. These enhanced lane
images were obtained as the output of ELCNN. We performed 5-
fold cross validation in this experiment for validation. The final
accuracy is calculated after combining the results from RANSAC
algorithm over non-trivial and trivial situations for lane detection.
Table 3 presents the lane detection accuracy of several existing
methods compared with the proposed method. Unfortunately, the
frames used in the evaluation are different depending on the
condition of individual methods and the selected training data are
also different. Selected lane detection results using the proposed
method from the selected images are provided in Figs. 13 and 15.

Fig. 14 analyzes the image enhancement results of the CNN
and ELCNN with several complex road scenes. The images in
the top row (rectangular) are the edge detection results; the
images in the second row are grayscale histograms illustrating the
distributions of grayscale intensities. The greater the variance of a
histogram, the more difficult it is to distinguish lane edges from
road regions. When variance is small, the boundary between lane
edge distribution and road distribution is clear.

118 J. Kim et al. / Neural Networks 87 (2017) 109–121
Table 3
Performance comparison with the Caltech dataset.

Video Caltech dataset (%)
cordova1 cordova2 washington1 washington2

CEDHTa in YCbCr (Son et al., 2015) 93.6 (569 frame, using illumination data)
RODTb with particle filter (Ruyi et al., 2011) 97.4 91.1 97.8 97.3
IPM with particle filter (Sehestedt, Kodagoda, Alempijevic, & Dissanayake, 2007) 97.8 89.4 92.2 96.2
Caltech lane detection (Aly, 2008) 97.2 96.2 96.7 97.3
Line segment detection based on vanishing point (Benligiray et al., 2012) 98.8 98.3 91.4 95.3
Proposed method 98.7 98.9 98.0 98.6
a Canny edge detection and Hough transform.
b Row orientation distance transform.
9000

8000

7000

6000

5000

4000

3000

2000

1000

0

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

5000

6000

4000

3000

2000

1000

0

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

× 104

a b c

d e f

Fig. 14. Results of lane detection, grayscale histogram, and 3D graph with the CNN and ELCNN: (a) edge image, (b) result of CNN, (c) result of ELCNN, (d) histogram of edge
image, (e) histogram of CNN result, (f) histogram of ELCNN result.
4.4. Computation time

Another benefit of using ELM is that it can learn weights
extremely quickly; hence, applying ELM learning to a CNN can
dramatically reduce the required computation time. Table 4 shows
a comparison of training computation time. For a fair comparison,
we included additional fully connected layers to the CNN model
so that it would have the same number of parameters as the
ELCNN. The training speed of the ELCNN is at least 800 times
faster, suggesting that the proposed ELCNN is particularly effective
in applications where rapid training or model adaptation are
required. Unlike the conventional CNN, the ELCNN does not
require training of convolutional kernels to extract the best
feature representations. Rather, the ELCNN optimizes the model
by training ELM layers with less effective randomly weighted
convolutional kernel features. The effectiveness of randomly
selected features has been evaluated in previous work (Saxe et al.,
2011). As the authors pointed out, randomly selected features also
can generate useful features. Even if those features are not the best
features, they can be sufficient for classification.

Fig. 16 indicates convergence curves for each task. Since the
ELCNN converges within only 25 epochs whereas the conventional
CNN converges after 100,000 epochs, we used a logarithmic scale
for the epoch axis. This training graph shows how the ELCNN
converges faster than the conventional CNN. As shown in Table 4,
even though the ELCNN takes a little bit more computational load
per training epoch because of the pseudoinverse calculation, the
required number of epochs is significantly less than that needed
for conventional backpropagation. The experiment for comparing
computation times was performed using an Intel i7-4790 3.6 GHz
CPU.

5. Conclusion

In this paper, we propose a novel method, called an extreme
learning convolutional neural network, and demonstrated its ef-
fectiveness in a lane detection task. To detect lanes efficientlywhile
ignoring noise and other obstacles, we applied the RANSAC algo-
rithm for simple road scenes and employed a machine-learning-
based method to more complex road scenes. In previous work,
conventional CNNs have been used to enhance the lines defining
driving lanes in input images. Although CNNs provide acceptable
lane detection performance, learning the complex convolution
and deep network architecture requires significant computation.
We propose a new learning algorithm that significantly reduces
training time compared with conventional CNNs. Using the same
dataset, training time was reduced by 1/50–1/200; hence, the
applicability to real-time applications is significantly increased.
Moreover, because ELM learning ensures a global maximum given
the target output, we obtained superior accuracy to that of the con-
ventional CNN on several different databases.

To apply lane detection in ADAS systems, detection shouldwork
in real time in embedded platforms, so it is necessary to reduce
computational overhead. As future work, we will consider a fully
connected ELCNN without convolution layers. Generally, a C-layer
can connect local input in a feedforward process and thus can
reduce local minima problems. However, the proposed method
can use a C-layer to calculate middle-layer targets and not reveal
the advantage of the C-layer. Thus, we expect better performance
in a fully connected network. Finally, we will also attempt to
apply this method to a large-scale dataset. ELM requires matrix
inversion, which can increase computation time dramatically for
high-dimensional data. Various iterative methods are available
for matrix inversion without the high-dimensionality problem, so
the proposed method can be improved to deal with large-scale
datasets.

Acknowledgments

This research was supported by ICT R&D program of MSIP/IITP.
[R7124-16-0004, Development of Intelligent Interaction Technol-
ogy Based on Context Awareness and Human Intention Under-
standing] and was supported by the National Research Foundation

J. Kim et al. / Neural Networks 87 (2017) 109–121 119
Fig. 15. Results from the Caltech dataset: (a) road images, (b) results.

120 J. Kim et al. / Neural Networks 87 (2017) 109–121
Fig. 16. Loss convergence curve comparison between CNN and ELCNN: (a) KNU DB Case 1 convergence curve. (b) KNU DB Case 2 convergence curve. (c) KNU DB Case 3
convergence curve. (d) Caltech DB Case 1 convergence curve. (e) Caltech DB Case 2 convergence curve. (f) Caltech DB Case 3 convergence curve.
Table 4
Comparison of computation time for training.

CNN ELCNN
KNU DB Caltech DB KNU DB Caltech DB

Total training CPU time ((CPU time
per epoch) × (number of epochs
for desired accuracy))

Case 1 >1000 h (36.01 s/epoch
× 100,000 epochs)

>300 h (11.82 s/epoch
× 100,000 epochs)

74–75 min (44.44 s/epoch
× 100 epochs)

2–3 min (14.66 s/epoch
× 9 epochs)

Case 2 >600 h (22.40 s/epoch
× 100,000 epochs)

>200 h (7.27 s/epoch
× 100,000 epochs)

12–13 min
(28.89 s/epoch × 25
epochs)

1–2 min (9.44 s/epoch
× 9 epochs)

Case 3 >700 h (25.96 s/epoch
× 100,000 epochs)

>300 h (13.85 s/epoch
× 100,000 epochs)

13–14 min
(33.37 s/epoch × 25
epochs)

7–8 min
(17.86 s/epoch × 25
epochs)

Total >2300 h >800 h 99–102 min 10–13 min
of Korea (NRF) grant funded by the Korea government (MSIP) (No.
NRF-2016M3C1B6929647).

References

Aly, M. (2008). Real time detection of lane markers in urban streets. In Intelligent
vehicles symposium, 2008 IEEE (pp. 7–12). IEEE.

Apostoloff, N., & Zelinsky, A. (2003). Robust vision based lane tracking using
multiple cues and particle filtering. In Intelligent vehicles symposium, 2003.
Proceedings. IEEE (pp. 558–563). IEEE.

Assidiq, A. A., Khalifa, O. O., Islam, R., & Khan, S. (2008). Real time lane
detection for autonomous vehicles. In International conference on computer and
communication engineer-ing, 2008, ICCCE 2008. (pp. 82–88). IEEE.

Benligiray, B., Topal, C., & Akinlar, C. (2012). Video-based lane de-tection using a fast
vanishing point estimation method. In Multimedia, ISM, 2012 IEEE international
symposium on IEEE, December (pp. 348–351).

Bertozzi, M., & Broggi, A. (1996). Realtime lane and obstacle detection on the
system. Proceedings of the IEEE Intelligent Vehicles, 213–218.

Borkar, A., Hayes, M., & Smith, M. T. (2012). A novel lane detection system with
efficient ground truth generation. IEEE Transactions on Intelligent Transportation
Systems, 13(1), 365–374.

Brust, C.A., Sickert, S., Simon,M., Rodner, E., &Denzler, J. (2015). Convolutional patch
networks with spatial prior for road detection and urban scene under-standing.
ArXiv Preprint arXiv:1502.06344.

Chen, T., Chen, Z., Shi, Q., & Huang, X. (2015). Road marking detection and
classification using machine learning algorithms. In Intelligent vehicles sym-
posium, IV, 2015 IEEE, June (pp. 617–621).

Guo, L., & Ding, S. (2015). A hybrid deep learning CNN-ELM model and its
application in handwritten numeral recognition. Journal of Computational
Information Systems, 11(7), 2673–2680.

Gurpinar, F., Kaya, H., Dibeklioglu, H., & Salah, A. (2016). Kernel ELM and CNN based
facial age estimation. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops (pp. 80–86).
He, J., Rong, H., Gong, J., & Huang, W. (2010). A lane detection method for lane
departure warning system. In 2010 International conference on optoelectronics
and image pro-cessing, vol. 1, (ICOIP). (pp. 28–31). IEEE.

He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 5353–5360).

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and
applications. Neurocomputing , 70(1), 489–501.

Kim, Z. (2008). Robust lane detection and tracking in challenging scenari-os. IEEE
Transactions on Intelligent Transportation Systems, 9(1), 16–26.

Kim, J., & Lee, M. (2014). Robust lane detection based on convolu-tional neural
network and random sample consensus. In Neural information processing
(pp. 454–461). Springer International Publishing.

Kim, S. W., Qin, B., Chong, Z. J., Shen, X., Liu, W., Ang, M. H., et al. (2015).
Multivehicle cooperative driving using cooperative perception: design and
experimental validation. IEEE Transactions on Intelligent Transportation Systems,
16(2), 663–680.

Kreucher, C., Lakshmanan, S., & Kluge, K. (1998). A driver warning sys-tem based on
the LOIS lane detection algorithm. In Proceedings of IEEE international conference
on intelligent vehicles, Stuttgart, Germany, Vol. 1, October (pp. 17–22).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, B. H., Im, S. H., Heo, M. B., & Jee, G. I. (2015). Curve modeled lane and stop
line detection basedGPS error estimation filter. In Intelligent vehicles symposium
(IV), 2015 IEEE (pp. 406–411). IEEE.

Lee, K., & Park, D. C. (2015). Image classification using fast learning convolutional
neural networks. Advanced Science and Technology Letters, 113, 50–55. (Art,
Culture, Game, Graphics, Broadcasting and Digital Contents 2015).

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6(4), 525–533.

Niu, J., Lu, J., Xu, M., Lv, P., & Zhao, X. (2015). Robust lane detection using two-stage
feature extraction with curve fitting. Pattern Recognition,.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, 400–407.

http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref1
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref2
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref3
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref5
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref6
http://arxiv.org/1502.06344
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref9
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref11
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref13
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref14
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref15
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref16
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref18
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref19
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref20
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref21
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref22
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref23

J. Kim et al. / Neural Networks 87 (2017) 109–121 121
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by
back-propagating errors. Cognitive modeling , 5, 3.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,Ma, S., et al. (2015). Imagenet
large scale visual recognition challenge. International Journal of Computer Vision,
115(3), 211–252.

Ruyi, J., Reinhard, K., Tobi, V., & Shigang, W. (2011). Lane detection and
tracking using a new lane model and distance transform. Machine Vision and
Applications, 22(4), 721–737.

Saxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., & Ng, A.Y. (2011). On
random weights and unsupervised feature learning. In Proceedings of the 28th
international conference on machine learning, ICML-11 (pp. 1089–1096).

Sehestedt, S., Kodagoda, S., Alempijevic, A., & Dissanayake, G. (2007). Efficient Lane
Detection and Tracking in Urban Environments. In ECMR.

Sermanet, P., & LeCun, Y. (2011). Traffic sign recognition with multi-scale
convolutional networks. In Neural networks, IJCNN, The 2011 international joint
conference on IEEE, July (pp. 2809–2813).

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function
minimization.Mathematics of Computation, 24(111), 647–656.

Shihavuddin, A. S.M., Ahmed, K.,Munir,M. S., & Ahmed, K. R. (2008). Road boundary
detection by a remote vehicle using radon transform for path map generation
of an unknown area. International Journal of Computer Science and Network
Security, 8(8), 64–69.

Shin, S., Shim, I., & Kweon, I. S. (2015). Combinatorial approach for lane detection
using image and LIDAR reflectance. In 2015 12th International conference on
ubiquitous robots and ambient intelligence, (URAI). (pp. 485–487). IEEE.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. ArXiv Preprint arXiv:1409.1556.

Son, J., Yoo, H., Kim, S., & Sohn, K. (2015). Real-time illumination invariant lane
detection for lane departure warning system. Expert Systems with Applica-tions,
42(4), 1816–1824.

Tapia-Espinoza, R., & Torres-Torriti, M. (2013). Robust lane sensing and departure
warning under shadows and occlusions. Sensors, 13(3), 3270–3298.
Tissera, M. D., & McDonnell, M. D. (2016). Deep extreme learning machines:
supervised autoencoding architecture for classification. Neurocomputing , 174,
42–49.

Truck, V. (2013). European Accident Research and Safety Report 2013.Gothenburg,
January.

Voisin, V., Avila, M., Emile, B., Begot, S., & Bardet, J. C. (2005). Road markings
detection and tracking using hough transform and kalman filter. In Advanced
concepts for intelligent vision systems (pp. 76–83). Berlin, Heidelberg: Springer.

Wei, J., Liu, H., Yan, G., & Sun, F. (2016). Multi-modal deep extreme learning
machine for robotic grasping recognition. In Proceedings of ELM-2015 volume
2 (pp. 223–233). Springer International Publishing.

Wen, Q., Yang, Z., Song, Y., & Jia, P. (2008). Road boundary detection in complex
urban environment based on low-resolution vision. In Proceeding of the
11th joint conference on information science, State Key Laboratory on Intelliget
Technology and Systems, Tsinghua National Laboratory for Information Sicence and
Technology, Department of Computer Science and Technology, Tsinghua University
Beijieng, Vol. 100084, December (pp. 1–7).

Yoo, Y., & Oh, S.Y. (2016). Fast training of convolutional neural network classifiers
through extreme learning machines. In The bi-annual IEEE world congress on
computational intelligence, IEEE WCCI, July.

Zeng, Y., Xu, X., Fang, Y., & Zhao, K. (2015). Traffic sign recognition using extreme
learning classifier with deep convolutional features. In The 2015 international
conference on intelligence science and big data engineering, IScIDE 2015, Suzhou,
China, June.

Zheng, J., Wang, Y., & Zeng, W. (2015). CNN based vehicle counting with virtual
coil in traffic surveillance video. In Multimedia big data, BigMM, 2015 IEEE
international conference on IEEE, April (pp. 280–281).

Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., & Chen, H. (2010). A novel lane detection
based on geometrical model and gabor filter. In Intelligent vehicles symposium
(IV), 2010 IEEE (pp. 59–64). IEEE.

http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref24
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref25
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref26
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref30
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref31
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref32
http://arxiv.org/1409.1556
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref34
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref35
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref36
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref38
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref39
http://refhub.elsevier.com/S0893-6080(16)30188-5/sbref44

	Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection
	Introduction
	Related works
	Lane detection
	ADAS implementation using CNNs
	CNN applications with ELM

	Proposed method
	Extreme learning convolutional neural networks (ELCNNs)
	Lane detection using a CNN with ELM
	Lane detection using RANSAC
	Enhanced lane detection using an ELCNN

	Experimental results
	Experimental setup
	Evaluation on the KNU database
	Evaluation on the Caltech database
	Computation time

	Conclusion
	Acknowledgments
	References

