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Abstract— In this paper, a robust lane detection method based
on vanishing point estimation is proposed. Estimating a vanishing
point can be helpful in detecting lanes, because parallel lines
converge on the vanishing point in a projected 2-D image.
However, it is not easy to estimate the vanishing point correctly in
an image with a complex background. Thus, a robust vanishing
point estimation method is proposed that uses a probabilistic
voting procedure based on intersection points of line segments
extracted from an input image. The proposed voting function is
defined with line segment strength that represents relevance of the
extracted line segments. Next, candidate line segments for lanes
are selected by considering geometric constraints. Finally, the
host lane is detected by using the proposed score function, which
is designed to remove outliers in the candidate line segments.
Also, the detected host lane is refined by using inter-frame
similarity that considers location consistency of the detected host
lane and the estimated vanishing point in consecutive frames.
Furthermore, in order to reduce computational costs in the
vanishing point estimation process, a method using a lookup
table is proposed. Experimental results show that the proposed
method efficiently estimates the vanishing point and detects lanes
in various environments.

Index Terms— Lane detection, line segment, vanishing point
estimation, probabilistic voting, lane departure warning (LDW)
system.

I. INTRODUCTION

IN THE research of advanced driver assistance systems,
there has been a growing interest in techniques that can

improve driver safety [1]–[3]. Of these techniques, a lane
departure warning (LDW) system alerts a driver if the vehicle
deviates from a lane or a narrow road on arterial roads and
freeways, and it operates to prevent unnecessary alerts only
when the vehicle goes above a certain speed. The LDW system
can help to reduce vehicle crashes that are caused by careless
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or drowsy driving. There has been much research on vision-
based lane detection for the LDW system [4]–[10]. In these
lane detection methods, color or edge information is utilized
as a feature of the lane.

Various researches have been presented on the detection of
lanes using color cues [11], [12], because lanes and roads
have contrasting colors. However, it is difficult to discriminate
them by using color differences between lanes and roads in
various environments such as changing illumination, back-
light, nighttime, and rainy conditions. Therefore, color cues
have been limitedly used to detect roads because variations
in the color on the roads are smaller than those on the
lanes [13], [14].

One way to overcome this disadvantage of using the
color cues for lane detection is to employ edge cues.
Liu et al. [15] have detected lanes by using the Hough
transform technique. However, their method has a drawback
that the false positive rate can be high in an image with
many spurious lines extracted from various safety markers
on the road, from shadows, and so on. Therefore, other
methods [16], [17] apply a ridge feature to detect lanes by
using dark-bright-dark patterns in the lanes. Kang et al. [17]
have proposed a multi-lane detection method that uses the
ridge feature and the inverse perspective mapping (IPM)
which is widely used to detect lanes because it can remove
the perspective distortion on lines that lie in parallel in the
real world [10], [18]–[20]. The IPM transforms an image
from a camera view to a bird’s eye view by using camera
parameters. Thus, lanes are presented perpendicularly and have
the same width in the transformed image, where simple filters
or geometric constraints can be used to detect lanes. In the
IPM-based technique, however, the effectiveness of mapping
is reduced if there are obstacles in the road. In addition, the
accuracy of mapping can decrease because vibrations occur in
an image when a vehicle is in motion.

Unlike the approaches mentioned above, methods using a
vanishing point have been applied to lane detection. Since
lanes are parallel to each other, they pass through their
vanishing point in the image plane. Using this property,
the false detections can be decreased by filtering out lines
that do not pass through the vanishing point. Therefore, the
vanishing point has been widely used to detect lanes [21] and
roads [22]–[24]. Furthermore, it can be used in various mobile
applications where parallel lines detection plays an important
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role, such as corridor detection [25]–[28], power transmission
lines inspection [29]–[31], 3D reconstruction [32], [33], and
so on.

In order to extract a vanishing point exactly, first, lines
should be extracted correctly. However, it is difficult to extract
lines exactly from an image because of noises. Grompone von
Gioi et al. [34] have introduced a line segment detector (LSD)
that considers a line segment as a rectangle that consists of
aligned points with similar gradient angles. Each rectangle is
validated by using the a contrario approach [35]. Also, their
method provides a good false detection control. They show
that the LSD method is not only robust to noise but also fast
in their paper. Because of this advantage, their method has
been used to detect lanes [36], [37]. In the proposed method,
the LSD method is applied to estimate the vanishing point and
to detect lanes by considering the relevance of line segments.

In this paper, we assume that a monocular camera is front-
mounted in the middle of the car and that the road is flat
for a short distance in front of the camera. Then, in the short
distance area corresponding to the bottom region of the image,
occlusion by other vehicles does not occur generally because
vehicles keep a safe distance from each other. In the proposed
lane detection algorithm, line segments are first extracted by
using the above mentioned LSD method in an image and
then the vanishing point of the lanes is estimated by using a
probabilistic voting procedure. The voting function is defined
based on the line segment strength that represents relevance
of the extracted line segments. Next, lanes are detected by
finding peaks in the score function that measures how high a
test line passing through the vanishing point has directional
support from the line segments. Furthermore, because the
voting function has high computational costs in the proposed
algorithm, a method that approximately computes the voting
function by using a lookup table which is constructed in
advance is proposed to reduce computational costs. However,
lanes may still not be detected accurately in roads where there
are noises such as various pavement markings, repaired marks,
superannuated lane markings, and so on. These noises can
result in intermittent lane detection failures. Therefore, in order
to reduce these failures, we utilize inter-frame similarity that
considers location consistency of the detected lanes and the
estimated vanishing point in consecutive frames. Finally, the
proposed method detects the host lane by using the inter-frame
similarity.

The main contributions of this paper are threefold: 1) A new
vanishing point estimation method robust to noise is proposed.
The proposed probabilistic voting function is defined with
line segment strength that represents relevance of extracted
line segments. 2) A lookup table-based voting algorithm is
proposed to reduce computational costs of the voting function.
3) The host lane is detected efficiently by finding peaks in
the proposed score function based on geometric relationships
between detected parallel lines and their estimated vanishing
point. Then, it is refined by using inter-frame similarity that
considers location consistency of the detected lanes and the
estimated vanishing point in consecutive frames.

The remainder of this paper proceeds as follows. Section II
reviews the previous works on lane detection. Section III

explains the proposed lane detection method and Section IV
describes an algorithm improving the accuracy of the proposed
lane detection method by using consecutive frames. Exper-
imental results are presented in Section V and Section VI
describes applications for the proposed method. Finally, con-
clusions are given in Section VII.

II. RELATED WORK

The IPM-based methods have been widely used to detect
lanes. Aly [19] transformed an input image into an IPM
image and then vertical direction lines are extracted by using
a simplified Hough transform. Finally, lanes are estimated by
utilizing the RANSAC spline fitting method. Borkar et al. [10]
also used the IPM technique to estimate lanes. First, the
IPM image of an input image is converted into a binary image
by using the adaptive threshold method and then the lane
marker candidates are selected by utilizing predefined lane
templates. Then, outliers are eliminated by using RANSAC
and lanes are tracked by using a Kalman filter. Recently,
Kang et al. [17] have proposed a detection method for multi-
lanes that are parallel to each other. They first extracted ridges
on a road as lane features. To remove the perspective effect,
they transformed the lane features from image coordinates to
IPM coordinates. Then, a histogram of x coordinate values for
each lane feature has four local maxima because, in the IPM
image, the lane features that are extracted from the same lane
are distributed with a small variance on the x axis. Therefore,
the lanes are detected by clustering the lane features around
each local maximum point. Similarly to [17], Hur et al. [38]
have proposed a multi-lane detection method. However, they
did not use the IPM technique. Instead, they extracted the
lane features directly from an input image. They detected not
only parallel lanes but also various nonparallel lanes, such
as intersections and splitting and merging lanes, in urban
environments. In their method, lane features are extracted by
using the ridge property and are clustered into a small group.
This group is described by a set of coefficients which are
estimated by using conditional random fields to robustly detect
multiple lanes.

On the other hand, vanishing point-based methods also
have been used to detect lanes or roads to reduce a false
detection rate. Wang et al. [21] have proposed a lane detection
algorithm based on the B-Spline snake model. To initialize
this model and track lanes, the vanishing point is estimated
by using a Canny/Hough estimation of vanishing points
(CHEVP). However, this method has a disadvantage of having
a high false detection rate under shadowy or illuminated
conditions. Rasmussen [39] has introduced an ill-structured
road detection method. First, they computed texture orientation
for all pixels of an input image by using multi-scaled Gabor
filters. Then, the vanishing point is estimated by voting in a
predefined area, and the estimated vanishing point is tracked
from frame to frame. However, this method has a drawback
that the vanishing point can not be estimated exactly in case
its location is rapidly changed in each consecutive frame.
In Kong et al.’s method [22], texture orientation using
Gabor filters was applied to lane detection. They defined
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the confidence score of the texture orientation, and esti-
mated a vanishing point by using an adaptive soft voting
scheme in a local voting area using high confidence voters.
Moghadam and Dong [40] have proposed a vanishing point
estimation method that can be applied to structured and
unstructured roads. Their method computes a dominant orien-
tation of a pixel by using four Gabor filters, which is similar
to Rasmussen’s method [39] and Kong et al.’s method [22].
Then, Moghadam and Dong [40] defined rays of each pixel
by using these dominant orientations, and carried out a voting
procedure by using the relationship between a pixel and a ray.
Finally, a pixel with a maximum number of votes is selected
as a vanishing point.

As mentioned above, these methods calculate the orientation
of pixels by using a Gabor filter, and then estimate the vanish-
ing point by using various voting functions. Unfortunately, in
their methods, false detections increase considerably in noisy
images. For robustness to noise, Liu et al. [36] applied the
LSD method to detect lanes. They first defined a region of
interest (ROI) where the lanes are located, and extracted line
segments by using the LSD method in this region. These line
segments are filtered out by utilizing orientation constraints
because they may include line segments extracted from non-
lane markings. Then, out of intersection points of pairs of
line segments, a point with maximum intersection number
is selected as a vanishing point of lanes. Finally, the host
lane is detected by considering a geometric distance between
the vanishing point and the reserved line segments. However,
they did not consider relevance of line segments, and so their
method may yield an unsatisfactory performance in noisy
environments because irrelevant line segments are extracted
from noisy areas or background clutter. Similar to the proposed
vanishing point estimation method, Yuan et al. [41] have
introduced a vanishing point estimation method with a proba-
bilistic framework. They converted estimation of a vanishing
point in the image space into estimation of line parameters
in the parameter space. They first extracted straight lines by
using the progressive probability hough transform and then the
maximum a posteriori was used to estimate a vanishing point
of the lines. However, their method has a disadvantage that
it is difficult to estimate the vanishing point when a variation
of lines between consecutive frames is large, and that it also
needs a separate process to initialize the parameters.

Recently, Jung et al. [9] have proposed a lane detec-
tion method using spatiotemporal images. The spatiotemporal
image is obtained from video and generated by accumulating
a set of pixels which are extracted on a horizontal scan-line
with a fixed location in each frame along a time axis. Then, in
the spatiotemporal image, lanes are detected by using hough
transform. Their method is robust to short-term noises such
as missing lanes or occlusion by cars, however, not only
using the spatiotemporal image needs a period of time to
accumulate the pixels but also it is not easy to detect lanes
accurately on a road with various pavement markings because
they use heuristic constraints to find an initial position of lanes.
Gu et al. [42] enhanced lanes in an image by using an
extremal-region enhancement kernel and select lane candidates
in the edge map that is obtained by applying the canny edge

Fig. 1. Block diagram of the proposed methods.

detector and the hough transform. Finally, lanes are detected
by using a rule-based probability. They presented a simple and
efficient method for detecting lanes, however, their method is
not robust to scenes with broken lane markings, shadows, or
various pavement markings.

III. LANE DETECTION

An overview of the proposed lane detection method is
shown in Fig. 1. In order to detect lanes, line segments are
first extracted by using the LSD method [34] on the input
image, and the line segment strength is computed for each line
segment. Then, a vanishing point of lanes is estimated by using
a probabilistic voting procedure with the line segment strength.
The extracted line segments are filtered out by considering
whether their orientations are similar to those of the lanes or
not, then reserved line segments are selected as candidate line
segments. Finally, lanes are detected from those candidate line
segments.

A. Vanishing Point Estimation

Parallel lines in a real world environment meet at a single
point in an image because of the perspective effect that occurs
in the process of projection from a 3D to a 2D image. This
point is called the vanishing point. The vanishing point of
lanes can be calculated as an intersection point of a pair of
line segments extracted from lanes. The vanishing point can
also be used to find lines parallel to the lanes. Therefore, if
the vanishing point of line segments parallel to lanes is found,
it can be helpful in detecting lanes.

In the image, a line segment consists of aligned pixels.
Errors that occur during the line segment extraction process—
pixel alignment error caused by curves, clutter around a line,
and so on—make it difficult to estimate the vanishing point
exactly. As shown in Fig. 2, the intersection points of line
segments that are extracted from the lanes do not meet at a
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Fig. 2. Example of line segments and intersection points. The circles of
various colors are intersection points of line segments (red). The yellow circle
is a vanishing point of the lanes.

single point because of the pixel alignment error. Therefore,
this paper first proposes a robust vanishing point estimation
method using a probabilistic voting procedure.

In order to consider the pixel alignment error, the line
segment strength τ , which represents how well orientations
of pixels forming a line segment are aligned, is introduced in
the proposed method. τ is defined to assign higher values to
longer and well-aligned sharper line segments, as follows:

τi = li

wi
, (1)

where li is the length and wi is the width of a line segment
extracted by the LSD method [34]. Line segments with higher
τ values are considered more relevant. Line segments whose
orientations are similar to those of the lanes are shown in
Fig. 2. The thickness of the line segments represents the line
segment strength.

For a pair of line segments (Li , L j ), the intersection point
of (Li , L j ) is considered to be a Gaussian distribution in an
image plan �, as follows:

PVij (x, y;mij ;x, mij ;y , σi j ;x , σi j ;y)

= 1

2πσi j ;x σi j ;y
e
−[ (x−mi j;x )2+(y−mi j;y )2

2σi j;x σi j;y ]
, (2)

where (x, y) ∈ �, (mij ;x , mij ;y) is the intersection point of
(Li , L j ) in image coordinates, and σi j ;x and σi j ;y are standard
deviations along the x-axis and y-axis, respectively. In this
equation, the Gaussian model is assumed to be isotropic, and
then

σi j = σi j ;x = σi j ;y =
√

σ 2
i + σ 2

j , (3)

where σi = α · (1/τi ) and α is a scale factor. This Gaussian
model has a sharper and narrower distribution for a pair of
(Li , L j ) with higher line segment strength values, and assigns
higher probabilities of being the vanishing point to the area
around the intersection point. The overall voting function to
estimate the vanishing point is as follows:

PW (x, y) =
N−2∑

i=0

N−1∑

j=i+1

PVij (x, y;mij ;x, mij ;y , σi j ), (4)

Fig. 3. Histogram of standard deviations for intersection points of pairs of
line segments extracted in real road images.

where N is the number of line segments. Finally, the vanishing
point of the lanes can be estimated as follows:

V (x, y) = arg max
x,y
[PW (x, y)]. (5)

B. Approximate Computation for the Voting Function

In our previous work [43], the probabilistic voting process
is computationally expensive, because it computes Gaussian
distribution PVij for all pixels in a voting area for the inter-
section points of all pairs of line segments. However, the
distribution of PVij is determined by only σi j with the line
segment strength, so that PVij can be constructed in advance
as a lookup table by using a predefined σi j . Using the lookup
table leads to a reduction in computational costs, because it is
not necessary to compute the Gaussian function for all pixels
in the voting area. More information about the efficiency of
using the lookup table will be presented in the experimental
results. First, an approximate computation method using the
lookup table for PW is explained.

Let �̃i j be a subset of image plane �. It is an M by
M square image with a center point (mij ;u, mij ;v ). The lookup
table Ti j (u, v, σi j ) can be expressed as follows:

Ti j (u, v, σi j ) ≡ PVij (x, y;mij ;x , mij ;y, σi j ), (6)

where (u, v) ∈ �̃i j , u = x − mij ;x and v = y − mij ;y . Then,
(4) is represented by

P̃W (x, y) =
{∑

i
∑

j Ti j (u, v, σi j ) (x, y) ∈ �̃i j

0 otherwi se.
(7)

When the lookup table is constructed, a range of σi j must
be defined. If an input image has a size of R × S, li and
wi are in the range of 1 to

√
R2 + S2, and 1 to

√
RS,

respectively [34], then, σi j is in the range of α
√

2/(R2 + S2)

to α
√

2RS. However, it is inefficient to compute the lookup
table for all σi j . Therefore, in this paper, the range of σi j

is determined experimentally. Fig. 3 shows a histogram of
standard deviations for all intersection points of line segments
where each σi j is measured in a real road environment.
The line segments are extracted from a total of 923 images
acquired by the camera on arterial roads. The number of
intersection points is approximately 77000, and the bin size
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Fig. 4. The proposed line segment filtering: (a) parameters to select candidate
line segments, (b) searching candidate line segments in a fan-shaped area.

is set to 1. In Fig. 3, it is observed that σi j is only increased
to about 150 in a real road environment. Therefore, in this
paper, the lookup table for σi j with a range from 0 to 150 is
constructed. A typical values for M is 200.

C. Detection of Lanes

When the vanishing point of the lanes is estimated, line
segments that pass through the vanishing point can be found
easily in an image. Most of the line segments are from the
lanes, however, they may contain line segments that are not
parallel to lanes in the 3D space but pass through the vanishing
point by chance in the projected 2D image. In this paper,
therefore, a robust lane detection method is proposed to reduce
the influence of these outlier line segments.

1) Filtering: In this step, line segments that do not converge
to the vanishing point are first filtered out because they are not
parallel to lanes and therefore can not be lanes. In an image
obtained from the proposed lane detection method, the lanes
are located in a fan-shaped area centered on the estimated
vanishing point, as shown in Fig. 4(a) and (b). This property
can help lanes to be efficiently detected by searching only in
the fan-shaped area. First, a test line Lt (θ) is defined as a
line at an angle θ that rotates clockwise around the vanishing
point with an angle step of �θ , as shown in Fig. 4(a). di is
the shortest distance from Lt (θ) to a center point of Li , and
ϕi is the acute angle between Li and Lt (θ). In this paper, both
distance and angle are employed together because the direction
of each line segment can be arbitrary even though di is close
to zero. Finally, line segments are selected using the following
constraints: di < dt and ϕi < ϕt , where dt and ϕt are threshold
values. Line segments that satisfy these constraints are selected
as candidate line segments for lanes, and are considered further

Fig. 5. Score function for lane detection.

in the following decision step. Fig. 4(b) shows the process of
searching the candidate line segments in a fan-shaped area of
the input image.

2) Decision: For lane detection, candidate line segments
that converge at a vanishing point are selected. The selected
candidate line segments, however, can contain line segments
that are extracted from the surrounding environment and are
not parallel to lanes in the 3D space. Since these outliers can
affect lane detection, in this step, a lane decision method robust
to outlier line segments based on a score function is proposed,
and the score function is defined as follows:

SLt (θ) =
∑

i

τi exp(−di sin(ϕi )). (8)

SLt (θ) has a higher value if di and ϕi have lower values or
τi has a higher value. Therefore, a high score value means that
the probability of the overlap between Lt (θ) and Li extracted
from the lanes is high. Then we can consider that a set of
Lt (θ) with higher scores corresponds to lanes. Fig. 5 shows a
plot of SLt (θ) with respect to each angle value within the fan-
shaped region. However, the local peaks (shown as blue points)
can make it difficult to find the lanes correctly. Therefore,
SLt (θ) is smoothed by mean filtering for noise reduction, and
the flooding watershed algorithm [44] is applied to find two
peaks (shown as red points) that correspond to the host lane.

IV. EFFICIENT CONSECUTIVE LANE DETECTION

Generally, lane detection should be carried out for all
consecutive frames of a video sequence. In a road image, it can
contain various pavement markings, repaired marks, shadows
of trees or buildings and so on. They can be seen around lanes,
which can cause a problem in detecting lanes if they occlude
lanes or have orientations that are similar to those of lanes.
For a certain image with superannuated or broken lanes that
do not appear in the image, lane detection sometimes can not
be possible.

Therefore, there have been methods developed to detect
lanes by considering consecutive frames [21], [45], [46].
Wang et al. [21] detected lanes by using a lane model based
on B-spline curves with some control points. They iteratively
update parameters of the points in order to increase the lane
detection accuracy until differences between parameters in t
and t−1 frame are smaller than a pre-defined threshold value.
Ruyi et al. [45] have proposed a lane detection method using
a particle filter and a modified Euclidean distance transform.
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Algorithm 1 Algorithm for the Proposed Lane Detection in
Consecutive Frames
Data: Input image It

Output: Estimated Ṽ t and θ̃ t

1: for t = 1, 2, . . . , T (T is the number of frames) do
2: (V t , θ t ) = Detection(It );
3: Validation(V t , θ t );
4: (EV , Eθ ) = Update(QV , Q′V , Qθ );
5: Ṽ t ← EV ;
6: θ̃ t ← Eθ ;
7: end for

For a lane detection robust to complex road situations, they
introduced some lane point sets: one is predicted from t − 1
frame, and the others consist of points that are estimated
from t frame. The reliability of the sets is estimated by using
maximum likelihood estimation and the final lane point set is
selected as one with the largest reliability value. Wu et al. [46]
have improved the lane detection accuracy by using a Kalman
filter. They assumed that lanes do not substantially change
between consecutive two frames and then the lane in t frame
is estimated by using the detected lane in t − 1 frame.

Similar to above mentioned methods, we propose an effi-
cient lane detection method using consecutive frames. The
proposed method detects lanes finally by considering inter-
frame similarity for location consistency of the detected lanes
and the estimated vanishing point in consecutive frames. This
can help to compensate for intermittent lane detection failure
and result in a low false positive rate. The framework of the
proposed consecutive lane detection method can be found in
Algorithm 1. As mentioned in Section III, V and θ denote a
location of the vanishing point and angles of the host lane,
respectively. For the sake of convenience, we consider that θ
means both θle f t and θright , which are angles of left and right
boundary of the host lane, respectively. Note that θle f t and
θright are computed independently of each other. In order to
verify consecutive detection of lanes, three queues, QV , Q′V ,
and Qθ are used in the proposed method. The queue has a
FIFO(first in first out) structure and it is appropriate to decide
a partial continuity of data in consecutive frames. Note that
two queues, QV and Q′V , are used in terms of V , while only
one queue, Qθ is used with regard to θ . Let’s denote QV

as a queue for the vanishing point, and Qθ as a queue for
lane angles, then a mean and a standard deviation of QV are
defined as EV and σV , also a mean of Qθ is defined as Eθ .

The basic functions inside the main loop are:
• Detection(): Lane detection is carried out in t frame by

using the proposed lane detection method as mentioned
in Section III. It yields a location of the vanishing point
and angles of the host lane, then they are stored in the
queues.

• V alidataion(): This function validates whether a van-
ishing point in t frame, V t , and lane angles in t frame,
θ t , are reliable or not. Not only V t is inserted into QV

but also Q′V is cleared if ||V t − EV ||2 is smaller than
κv , and V t is inserted into Q′V otherwise. Also, θ t is

inserted into Qθ if θ t satisfies the following constraints,
β1 < θ t

le f t < β2 and β3 < θ t
right < β4 where β1, β2, β3,

and β4 are constants.

• U pdate(): This function updates queues in order to esti-
mate a vanishing point and lane angles. QV is replaced
with Q′V if the size of Q′V is bigger than κn and σ ′V
of Q′V is smaller than κv , and Q′V is cleared otherwise.
Finally, EV and Eθ are computed.

where β1 = 125°, β2 = 150°, β3 = 30°, and β4 = 55°. Also,
κv and κn are user-defined thresholds and are set to 5 and 3,
respectively.

V. EXPERIMENTAL RESULTS

A. Detection of Lanes

To evaluate the performance of the proposed method, exper-
iments were carried out on five categories in our database
and other lane detection methods [9], [36], [42] were tested
on our database to compare with our lane detection method.
Also, in order to compare Aly’s lane detection method with
our lane detection method, experiments were carried out on
four categories in the Caltech database [19]. Our code and
database used in the experiments are available on our website:
https://sites.google.com/site/juju1006s.

1) Our Database: The database contains consecutive
images (reduced to 320×240) from five different types of envi-
ronments: in daytime, in a tunnel, in a rainy day, in a backlight,
and in nighttime (from top to bottom rows in Fig. 6). They
are acquired by a front-mounted camera in the car on arterial
roads and consist of 525, 676, 222, 359, and 263 images,
respectively. For the daytime sequence, it is obtained in the
daytime and includes scenes with large illumination changes or
shadows, where confusing line segments of which orientations
are similar to those of lanes are extracted. The tunnel sequence
consists of images with tunnel lighting with various colors
and illumination changes at entry and exit of the tunnel. For
the rainy day sequence, it includes scenes with lanes that
are occluded by windshield wiper. The backlight sequence
is obtained when the sun is directly in front of the car and
the nighttime sequence consists of images with curves and
car leaving road. Overall, our database includes scenes with
various pavement markings, broken lane markings, shadows,
and so on.

Fig. 6 depicts sample results of the proposed lane detection
method for each sequence. The detected lanes are represented
as straight lines and we set an effective detection range
along the y axis in an image as 120 to 150 in order to
remove a bonnet area in the bottom side of an image. Overall,
it shows good lane detection performance, although there
are vehicles around the host lane and are various pavement
markings, broken lane markings, and shadows on the road.
The last and second last columns illustrate cases that the
proposed lane detection fails. Most of the failed cases are
caused by shadows or repaired marks of which orientations
are similar to those of the lanes on the road. Also, the
lane detection fails when the line segment detector fails to
extract line segments from lanes, which sometimes occurs
due to deterioration of painted lane markings or broken
lanes.
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Fig. 6. Sample results of the proposed lane detection method. Red lines refer to the detected lanes.

For every frame, each detected lane is compared to manually
drawn ground truth lanes and the following detection criteria
are applied to determine if the lane detection succeeds or not.
Let us denote a set of points on the detected and ground truth
lanes as D = {p1, p2, . . . , pnD }, and G = {q1, q2, . . . , qnG },
respectively. For each point pi ∈ D, we compute the nearest
distance, d p

i to G. Similarly, we do the same for q j ∈ G and
get the nearest distance, dq

j to D as follows:

d p
i =

nG
min

j
‖ pi − q j ‖2 , dq

j =
nD

min
i
‖ q j − pi ‖2 . (9)

Then, mean distances (d̄ p, d̄q) and median distances
(d̂ p, d̂q) are computed. In order to decide whether they are
the same, we apply the following criteria as in [19]:

min(d̄ p, d̄q) < t1 , min(d̂ p , d̂q) < t2, (10)

where t1 and t2 mean pre-defined thresholds. Finally, the lane
detection rate, R is defined as follows:

R(%) = ml + mr

2T
, (11)

where ml and mr denote the number of correctly detected left
and right lanes, respectively. Also, T is the total number of
images as in Algorithm 1. The parameter values used in this
experiment are α = 100, dt = 2, ϕt = 20, and t1 = t2 = 5.

We have simulated three different lane detection meth-
ods [9], [36], [42] to evaluate the performance of the proposed
lane detection method in terms of detection rate on our
database. Liu et al.’s method [36] first sets a ROI before
extracting line segments from an input image. In order to

Fig. 7. Example results of the ROI extraction in [36]. The computed upper
boundary and the fixed lower boundary of the ROI are represented by a red and
a blue line, respectively. The left image in each result shows mean values of
pixel intensities on each row in the input image [36]. (a) a success case of the
ROI extraction on Caltech database [19], (b) a failed case of the ROI extraction
on our database.

find the upper boundary of the ROI automatically, they use
an assumption that the upper boundary locates at a row with
the minimum mean intensity value in the input image. It may
work well on their database [36] and Caltech database [19].
However, this assumption has a limitation that it can only be
applied to images in which an average intensity of pixels on
a vanishing line of lanes is smaller than average intensities
of other rows. As shown in Fig. 7, for a sample image of
our database, their method can not find the upper boundary
of the ROI. Therefore, in order to exclude cases that their
method fails to detect lanes due to a wrong ROI, we modified
Liu et al.’s method to fix the upper boundary of the ROI and
compared it with ours. In the modified Liu et al.’s method,
the upper boundary of the fixed ROI is equal to that of our
method.

Table I presents the detection rates and Fig. 8 shows sample
results of the lane detection on our database. Overall, the
proposed method outperforms others. It is shown that there is
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TABLE I

COMPARISON OF LANE DETECTION RATES(%) ON OUR DATABASE

Fig. 8. Sample lane detection results. Modified Liu et al.’s, Gu et al.’s,
Jung et al.’s, and ours (top to bottom).

a considerable difference between lane detection rates of the
original Liu et al.’s method and ours. The proposed method
shows a good performance with detection rates of over 90%,
however, the detection rates of the original Liu et al.’s method
are lower than 76% because there are cases that not only
their assumption can not be efficiently applied to various road
environments but also lanes and their vanishing point can not
be estimated correctly due to heuristic constraints. Note that
the lane detection rates of our method are still higher than
those of the modified Liu et al.’s method.

In Gu et al.’s method [42], they enhance lines in intensity
and simply select lines that are the closest to the middle
of an image as lane candidates. However, lanes can not
detected accurately in roads where there are noises such as
various pavement markings, repaired marks, superannuated
lane markings and so on. Consequently, the detection rates of
their method are under 79% on our database including various
road environments.

Jung et al.’s method [9] shows slightly better performance
than ours in the tunnel sequence. In the other 4 different
types of sequences, however, the proposed method outper-
forms theirs. They use a simple motion compensation to align
lanes of consecutive frames because lanes are not located
consistently in the spatiotemporal images. The compensation
error, however, can be significantly increased when the time
difference between frames is longer due to computation time
or the image difference between frames is larger due to high
speed of a car, which can yield inaccurate lane detection. Also,
their method has a limitation that their heuristic constraints
can not efficiently deal with various noisy environment such
as backlight or pavement markings.

Fig. 9. Sample lane detection results on the Caltech database. The first and
second rows are sample results of Aly’s method [19]. The third and fourth
rows are sample results of our method.

TABLE II

LANE DETECTION RATES(%) ON CALTECH DATABASE

2) The Caltech Database: The Caltech database contains
consecutive images (640×480) from four different types of
environments: in cordova1, in cordova2, in washington1, and
in washington2 (left to right in Fig. 9). They consist of images
that are obtained in the daytime and include many shadows.
Also, it is not easy to detect lanes exactly on their database
because orientations of line segments extracted in the shadows
are similar to those of lanes. The first and second rows in Fig. 9
show sample results of lane detection using Aly’s method [19]
and the detected lanes are represented by green color spline
curves. The third and fourth rows in Fig. 9 depict the sample
lane detection results using our lane detection method and the
detected lanes are represented by red color line segments.

For comparison, we manually built ground truth lanes on
the Caltech database and applied the same parameter values
as used in experiments on our database. The parameter values
for the detection criteria, t1 and t2, are set to 15 and 20,
respectively. These values are the same as in [19]. The lane
detection rates computed by (11) are summarized in Table II.
Overall, our method performs better than Aly’s method except
for the washington1. The proposed method considers inter-
frame similarity for location of the detected lanes and the esti-
mated vanishing point in consecutive frames, whereas Aly’s
method detects lanes independently in each frame. Therefore,
our method outperforms Aly’s method on the Caltech database
in which there are various shadows such as the cordova1,
the cordova2, and the washington2. The inter-frame similarity,
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Fig. 10. Line segments whose endpoints are degraded by Gaussian noise
with various standard deviations, and estimated vanishing points (cyan):
(a) ground truth, (b) with a standard deviation of 3, (c) with a standard
deviation of 5.

Fig. 11. Vanishing point estimation error on noisy line segment images.

however, can sometimes be disturbed in a sequence of chang-
ing lanes, and so it can yield slightly incorrect lane detection
results. This occurred in the washington1 images and the
proposed lane detection shows a performance of about 3%
lower than that of Aly’s. On average, lane detection rates of
Aly’s method and ours are 87.97% and 92.43%, respectively.

B. Analysis for Gaussian Noise

1) Vanishing Point Estimation Error: In order to evaluate
the effectiveness of the proposed vanishing point estimation
method, the vanishing point estimation was carried out on
synthetic images with line segments whose endpoints are
degraded by Gaussian noise with zero mean and various
standard deviations denoted by σe, as shown in Fig. 10.
In Fig. 10, intensity images represent the voting function,
PW (x, y). The darker the pixel, the higher the probability of
being the vanishing point. It is shown that the vanishing points
are efficiently estimated on noisy line segments with a larger
value of σe.

Fig. 11 shows the mean and variance of the position error
of the estimated vanishing point when repeated 100 times
for each σe of the Gaussian noise. In the proposed method
without using a lookup table-based approximation, the esti-
mated position error is less than about four pixels on average,
although the standard deviation of the Gaussian noise increases
to 5. The vanishing point estimation error of the proposed
approach with a lookup table-based approximation is almost
equal to that of the method without using the approximation.
In Liu et al.’s method [36], however, the error increases to
15 pixels on average. From the results, we can see that the
proposed vanishing point estimation method can efficiently

Fig. 12. Comparison of lane detection rates when the estimated vanishing
point is corrupted by Gaussian noise.

Fig. 13. Example of salt-and-pepper noise: (a) original image, (b) image
corrupted by salt-and-pepper noise.

estimate the vanishing point of the lanes even in noisy envi-
ronments.

2) Lane Detection Error: We conduct experiments on our
database to verify how well positions of lanes are estimated by
the proposed lane detection method. Similar to the experiment
in terms of vanishing point estimation error, lane detection was
carried out on images with estimated vanishing points that
are degraded by Gaussian noises with zero mean and various
standard deviations denoted by σd . As shown in Fig. 12, the
overall detection rates of the proposed lane detection method
are over 90% although the detection rates are decreased
significantly in case of adding Gaussian noise with a standard
deviation of 5 to the vanishing point. This indicates that
the proposed method can robustly detect the lanes, although
estimated vanishing point of the lanes is severely distorted by
Gaussian noise.

C. Analysis for Salt-and-Pepper Noise

The salt-and-pepper-like noise can be occurred in an image
due to environmental factors such as rain, snow, or dust.
Therefore, we demonstrate the effectiveness of the proposed
lane detection method for salt-and-pepper noise. In order to
do this, experiments were carried out on our database. Input
images are corrupted by salt-and-pepper noise of which noise
density is one percent. Fig. 13 presents a sample image with
salt-and-pepper noise. As shown in Fig. 14, a difference in
detection rates between with and without salt-and-pepper noise
is less than about 2%. Also, it shows that the proposed method
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Fig. 14. Comparison of lane detection rates under salt-and-pepper noise.

Fig. 15. Comparison of computation time of the proposed lane detection
method.

yields satisfactory performance on rainy day images that are
similar to images corrupted by salt-and-pepper noise.

D. Comparison of Computational Speed for a Lookup Table

To verify the computational efficiency of the proposed
method with a lookup table-based approximation, the proposed
method is compared to the method without using the approx-
imation on our database. As shown in Fig. 15, the average
computation time of the method without using the approxima-
tion is about 2 sec per image, whereas the proposed method
with the approximation takes about 0.18 sec. In addition, the
variance of the proposed method with the approximation is
about 0.05 sec, however, the variance of the method without
using the approximation is about 1.9 sec. The experimental
result shows that the proposed method with the approximation
is not only more stable because the variation of its computation
time is smaller than that of the method without using the
approximation but also faster than the method without using
the approximation. All of the experiments were performed on
a system with a 4.0 GHz CPU and 32 GB RAM.

VI. APPLICATIONS

The proposed method extracts parallel lines by using a
score function based on geometric relationships between lines
and their estimated vanishing point, then lanes are detected
by considering the inter-frame similarity for location of the
detected lanes and the estimated vanishing point in consecutive
frames. Consequently, we can take advantage of a parallel
lines detection robust to noisy environments. Therefore, this
framework can be used in various applications where detecting

Fig. 16. Sample corridor floor detection results.

parallel lines plays an important role, such as corridor bound-
ary detection of an indoor mobile navigation system or power
transmission lines detection of a mobile power transmission
lines inspection system. Also, the proposed method has an
advantage in that the detection criteria can be controlled by
adjusting only three specialized parameters such as α, dt ,
and ϕt . Thus, it can be easily applied to various applications.

A. Indoor Mobile Navigation System

Mobile navigation systems operating inside a building
should be able to determine their own locations correctly
to carry out various services such as mobile object trans-
portation [47], mobile bin picking [48], and mobile teach-
ing [49]. In a corridor environment, however, it is difficult
to estimate a location of the mobile system exactly because
there may not be sufficient distinctive visual marks. Therefore,
various types of structures in a corridor environment such as
T-junctions, L-junctions, and ends, have been used for local-
ization [50]. In order to detect these structures, the corridor
floor can be an important cue. Thus, various methods have
been proposed to detect the corridor floor, such as a laser-based
method [25], an ultrasonic-based method [26] and vision-based
methods [27], [28]. The vision-based methods using a single
camera first estimate a vanishing point of a corridor from line
segments which are extracted from boundaries of a corridor.
Then, the corridor floor is detected based on the estimated
vanishing point information. In this process, the proposed
approach can be applied to finding the corridor floor.

Fig. 16 depicts sample results on corridor floor detection.
The estimated vanishing point of a corridor is shown by a
red point and the detected corridor boundaries are represented
by two different colors, red and cyan. The detected corridor
floor region is defined as the inside area between the detected
corridor floor boundaries. The images on the first and the
second rows depict sample results of detecting a corridor
floor with few obstacles for each of 3 types of structures
of the corridor: T-junctions, L-junctions, and ends. In these
images, boundaries of the corridor floor are partly missing
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because of open doors or junctions. However, the proposed
method estimates the vanishing point of the corridor and
detects boundaries of the corridor floor correctly. Also, as
shown in the images on the third row in Fig. 16, the proposed
method can efficiently estimate the vanishing point and the
corridor floor boundary, although there are obstacles in the
corridor.

The database for corridor floor detection consists of images
acquired by a single USB camera along four different paths in
a building. The total number of images is 732 and the detection
criteria is as follows: the detected corridor floor region should
overlap at least 95% of the ground truth region. The detection
accuracy on this database is 98.3%. The parameter values used
in the experiments are equal to those used in the experiments
on lane detection.

B. Mobile Power Transmission Lines Inspection System

As power consumption is increased, the importance of
power transmission lines(PTLs) maintenance is being empha-
sized for an efficient electrical energy transportation. On PTLs,
there are various structures such as dampers, clamps, and
insulators. These structures and PTLs should be regularly
inspected and repaired to ensure reliable power supply to con-
sumers. However, it is not only expensive but also dangerous
for human inspectors to inspect them manually. Therefore,
there has been growing interest on autonomous system-based
approaches [51]. For an autonomous inspection system, it is
important to detect the structures because they can block a
path of the system when the inspection system moves along
the PTLs. In order to detect the structures, PTLs detection
can be utilized efficiently because the structures are around
the PTLs. Thus, the PTLs detection plays an important role in
PTLs inspection systems [29]–[31]. PTLs detection problem is
similar to that of lane detection on a road since PTLs are also
placed in parallel to each other in the real world. Therefore, the
proposed approach can also be applied to the PTLs detection
problem.

Fig. 17 shows our PTLs database and sample PTLs detection
results on the database. The database that is used to evaluate
the performance of the PTLs detection consists of three kinds
of image sets acquired by the inspection system [30], and the
numbers of images are 101, 70, and 184, respectively. The
estimated vanishing point can be located not only within the
image but also outside of the image because of a viewpoint
change. For the purpose of visualization, therefore, an extra
black area is padded at the bottom of each image to represent
the vanishing point that might be located outside of the input
image. In Fig. 17, the detected PTLs are represented by four
different colors, and the estimated vanishing point is shown
by a red point. The detection criteria are as follows: First, the
orientation error of the detected PTLs should be within 5°.
Second, the detected PTLs should overlap at least 50% of
the ground truth positions. The detection accuracies for each
image set are 97.02%, 94.29%, and 95.65%, respectively. The
parameter values used in the experiments are α = 10, dt = 15,
and ϕt = 15.

As depicted on the first row in Fig. 17, the test images
contain many line segments whose orientations are similar to

Fig. 17. Sample power transmission lines detection results.

those of the PTLs since there are many strong line segments
extracted from the ceiling and walls of the indoor demon-
stration room. However, the results show that the vanishing
point of the PTLs can be robustly estimated and each of the
PTLs can be correctly detected by using the proposed method.
In outdoor scenes such as those shown on the second and the
third rows in Fig. 17, one can see that the proposed approach
can also detect the PTLs efficiently, even though there still
are many noisy line segments that come from background
structures in images.

VII. CONCLUSION

A robust lane detection method based on vanishing point
estimation using the relevance of line segments has been
described in this paper. The proposed method uses a prob-
abilistic voting procedure based on the line segment strength
to estimate the vanishing point of lanes correctly from a noisy
image. In images obtained from the front-mounted camera
in a vehicle, lanes are located in a fan-shaped area centered
on the estimated vanishing point. Based on this observation,
the proposed method detects lanes by searching only in
this fan-shaped area. Then, the score function is defined to
estimate lanes by using geometric relationships between the
line segments and the estimated vanishing point. Finally, lanes
are detected by applying flooding watershed algorithm for this
score function, and the location of the detected host lane is
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refined by utilizing the inter-frame similarity that considers
location consistency of the detected lanes and the estimated
vanishing point in consecutive frames. Furthermore, a method
using a lookup table is proposed to reduce computational
costs in the vanishing point estimation process. Through
experimental results, it was demonstrated that the proposed
method can estimate the vanishing point of lanes efficiently
and also detect lanes in various environments. In addition, it
was shown that the proposed approach could be successfully
applied to various applications such as corridor floor detection
and power transmission lines detection.

In the future, we hope to estimate lanes which are in a long
distance ahead of the car correctly. Also we would like to
extend the proposed approach to unstructured road detection.
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