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ABSTRACT

Background modeling and subtraction is a classical topic in

compute vision. Gaussian mixture modeling (GMM) is a pop-

ular choice for its capability of adaptation to background vari-

ations. Lots of improvements have been made to enhance the

robustness by considering spatial consistency and temporal

correlation. In this paper, we propose a sharable GMM based

background subtraction approach. Firstly, a sharable mecha-

nism is presented to model the many-to-one relationship be-

tween pixels and models. Each pixel dynamically searches

the best matched model in the neighborhood. This kind of

space-sharing way is robust to camera jitter, dynamic back-

ground, etc. Secondly, the sharable models are built for both

background and foreground. The noises resulted by local s-

mall movements could be effectively eliminated through the

background sharable models, while the integrity of moving

objects is enhanced by the foreground sharable models, espe-

cially for small objects. Finally, each sharable model is up-

dated through randomly selecting a pixel which matches this

model. And a flexible mechanism is added for switching be-

tween background and foreground models. Experiments on

ChangeDetection benchmark dataset demonstrate the effec-

tiveness of our approach.

Index Terms— Background modeling, GMM

1. INTRODUCTION

Background modeling is one of the classical and essential

problems in computer vision. It plays a significant role on

many applications, including object detection, video surveil-

lance, tracking, video compression, etc. As the most com-

monly used solution, background subtraction is widely ap-

plied in above tasks to distinguish foreground and back-

ground. In consideration of the first step of the whole process,

the performance of background subtraction heavily affects the

subsequent steps and the overall results.

Over the past years, diverse approaches, benchmarks and

libraries have been developed, which witnesses the impor-

tance of background subtraction. Among these approaches,

temporal information is fully utilized to build background

models. Based on the assumption that a pixel is independen-

t to its adjacent pixels, pixel based background modeling is

widely investigated, such as Gaussian Mixture Model (GM-

M) [1, 2], Kernel Density Estimation (KDE) [3], and non-

parametric approaches based on sample consensus (ViBe [4]

and PBAS [5]). Although pixel based approaches are effec-

tive and easy to bootstrap, they ignore the spatial relationship

between pixels, thus they are not robust enough to the noise

and background movement. In order to harness the informa-

tion around each pixel, some region based approaches [6, 7]

were proposed by incorporating the adjacent pixels around a

central pixel. This context information enhanced the robust-

ness for background noise and illumination, e.g., block de-

scriptors [7] and local binary similarity patterns (LBSP) [8].

Some other approaches [9, 10] clustered pixels into different

classes to build models. However, the region based approach-

es are usually sensitive to the region size and the complexity

of the video scene, which inevitably leads to precision loss.

To fully exploit the spatial-temporal correlation across d-

ifferent pixels, we propose a novel approach to learn sharable

models for background substraction. On one hand, we argue

that a model can be dynamically shared by different pixels

in different frames because adjacent pixels have similar pat-

tern in space and time. It is not necessary to build a back-

ground model for each pixel in a texture-consistent region.

This sharable strategy could response the relation between

pixels and models to reduce the total number of models. On

the other hand, we build the sharable models both for back-

ground and foreground pixels. As pointed out by [11], the use

of explicit foreground models along with background models

can be useful. With the sharable strategy, the noises result-

ed by local small movements can be effectively eliminated

by the sharable background models, while the integrity is en-

hanced by the sharable foreground models. Moreover, due

to many-to-one relationship between pixels and models, the

sharable models are updated through a randomly sampling s-

trategy, then a flexible mechanism is added for switching be-

tween foreground and background models to obtain complet-

ed foreground.

In short, the contribution of our work is two-fold: one is

that we present a sharable GMM model to exploit the spatial-

temporal correlation between pixels, which is robust to cam-



era jitter, dynamic background, etc; the other is that combin-

ing sharable background and foreground models with a ran-

dom update strategy presents the effectiveness on removing

nonstatic background and obtaining integral foreground.

2. RELATED WORKS

Among various background modeling approaches, the Gaus-

sian mixture modeling (GMM) is known to be effective in

sustaining background variations. In original GMM algo-

rithm, Stauffer et al. [1] presented an online EM algorithm

which estimated the maximum likelihood of the historical val-

ues for GMM background modeling. Their approach had two

assumptions: historical values of each pixel in background

can be represented by a set of Gaussian distributions; adja-

cent pixels are entirely independent. Though many improve-

ments have been made [12], this pixel independent assump-

tion makes the approaches vulnerable to the noise.

To alleviate this, some researchers presented to leverage

the local context information around a pixel, such as region

[6, 13] or block [7], cluster [9, 10] and other spatial-temporal

methods [14]. In [6], Fang et al. proposed a block-wise GM-

M method which consisted on a vector of 3 × 3 neighbors of

the current pixel. Latecki et al. [13] divided each image into

spatial-temporal blocks and obtained compact vector repre-

sentation of each block to provide a joint representation of

motion patterns and textures. These block based approaches

are robust to the noise and background movement, but provide

less precise foreground detections. In [7], Varadarajan et al.

modeled regions as mixture distributions to meliorate the flaw

of original GMM that could not effectively deal with dynam-

ic background and camera jitter challenged the performance

of GMM. In general, region-based model uses local contex-

t around a pixel for noise suppression, whereas is relatively

complex and vulnerable to pixel changes periodically.

Bhaskar et al. [9] clustered pixels with similar features

in HSV color space into different regions, and each cluster

was modeled by a GMM. Similarly, in [10], they utilized

clustering approaches to reduce the number of background

models while making models more robust to noise. It is ob-

vious that cluster-wise models are more robust to the noise

and pixel-wise models provide more accurate foreground seg-

mentations. The clustering approaches assumes that pixels

in the same cluster should experience the same background

changes, so that clusters need to initialize again when back-

ground changes. Although the clustering approaches reduce

the memory usage and the computational cost, the perfor-

mances are not superior to the pixel based approaches. A

case base GMM was proposed in [14] to allow some pixels

to share a background model. The pixel value in two con-

secutive frames and position cues as check features to find

a background model. However, this complex features were

sensitive to pixel changes periodically and limit the effects of

model sharing.

3. LEARNING SHAREABLE MODELS

To exploit the spatial-temporal correlation between pixels, we

propose a sharable mechanism that makes each pixel dynam-

ically search for the optimal model from neighboring models

according to its color feature. The overall flow of the pro-

posed approach is illustrated in Figure 1.

3.1. Pixel Model

We model the pixel values of an image as a mixture of Gaus-

sians both for background and foreground estimation. This

is beneficial for two aspects. One is that foreground models

can deal with stopped foreground and moved background ob-

jects. The other is that foreground tend to match foreground

models so that the completeness of foreground is easily guar-

anteed. Define xt as an input pixel value at the time t, and the

matching probability of the pixel belonging to a model is:

P (xt) =
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where µt
i and Σt

i are the mean value and the covariance matrix

of the ith Gaussian in the mixture, respectively. As Equation

(1), we calculate the probability of each pixel matching with

all background and foreground models around it.

3.2. Sharable Model

We adopt a sharable mechanism to exploit the spatial-

temporal correlation between pixels. Given a pixel xt, we

dynamically search an optimal model from background and

foreground models in a N × N region. We set B as back-

ground models and F as foreground models. LB(x
t) is de-

fined as a binary label for a pixel xt. If xt matches a back-

ground model, LB(x
t) = 1, otherwise LB(x

t) = 0. In a sim-

ilar fashion, if xt matches a foreground model, LF(x
t) = 1,

otherwise LF (x
t) = 0. The labeling criterion is computed as

follows,

LB(x
t) =

{

1, if |xt − µt
B,k| < 2.5σt

B,k

0, otherwise
(3)

LF (xt) =

{

1, if |xt − µt
F,k| < 2.5σt

F,k

0, otherwise
(4)

where µB,k and σB,k are the mean and standard deviations of

the kth distribution of a background model. µF ,k and σF ,k

are the mean and standard deviations of the kth distribution
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Fig. 1. Overview of the proposed approach.

of a foreground model. Then we calculate the matching prob-

ability with background and foreground models respectively:

P (xt|B) =

{
∑K

i=1 ωiNB,i(x
t, µt

i,Σ
t
i) if LB(x

t) = 1
0 if LB(x

t) = 0
(5)

P (xt|F) =

{
∑K

i=1 ωiNF,i(x
t, µt

i,Σ
t
i) if LF(x

t) = 1
0 if LF(x

t) = 0
(6)

To find an optimal model, we perform an exhaustive

search for all the matched models in a N ×N region around

the pixel xt. The model of maximum probability is obtained

with the following selection function.

P (xt) = argmax{Pi(x
t|B), Pj(x

t|F)},

1 < i < m, 1 < j < n
(7)

L(xt) =

{

1, if a background model is chosen

0, if a foreground model is chosen
(8)

where m and n are the number of models that need to match

within the N × N region. L(xt) is the final pixel label, and

P (xt) is the maximum matching probability.

In this way, a pixel is labeled into foreground or back-

ground by finding an optimal matched model in the neigh-

borhood. If no model is chosen, then the pixel is regarded

as foreground and a new model is established. To prevent

the overlapping of background and foreground distributions,

we add distance constraint when establishing the foreground

models. If L(xt) = 1 and no matched foreground model,

a new foreground model is built when |xt − µt| > 5σt. The

benefit is two-fold. One is to reduce the number of foreground

models. The other is to effectively suppress the noise pixels.

To illustrate the validity of sharable models, we output the

mean value of the optimal matched model for a pixel to gen-

erate a shared map. Figure 2 shows some examples of shared

maps, where we can observe distinctly that the shared map-

s reconstruct the original image. Actually, the shared maps

look like a blur effect of the original image. The wider the

search range is, the more blurry the shared maps look.

Source image 3 3 shared map 7×7 shared map 15×15 shared map

Mask image Mask image Mask imageGround truth

Fig. 2. Examples of shared maps with different search ranges.

3.3. Update

Original GMM adopts blind update to incorporate all sam-

ples into the background models. Since our approach has two

kinds of sharable models, the update confronts with two ques-

tions: the many-to-one relationship between pixels and mod-

els; the switch between background and foreground models.

Model update: We select a conservative update strategy

with a random sampling mechanism. Through randomly s-

electing a pixel that matching a model, the background and

foreground models are updated respectively. This is simple

but effective for the many-to-one relationship between pixels

and models.

Model switch: The conservative update may lead to dead-

lock situations and everlasting ghosts. For example, the back-

ground incorrectly classified as foreground prevents its back-

ground model from being updated. To solve this problem, we

add a switch to transform foreground models into background

models if a foreground model is used for a long period. We

set the switch time to 500 frames.

Model remove: If a sharable model is not used for a long

time, it is deleted. Here, we set the life time to 500 frames for

background models and 50 frames for foreground models.



Fig. 3. Variance changes for the blue channel of a background

model in “highway” sequence. The green points represent-

ing random pixel values are much more smooth than the blue

ones standing for pixel values in original GMM. The back line

shows that the variance degeneracy effectively controlled.

Table 1. Comparison results of different shared region size.

bg: background; fg: foreground.

Recall Precision F-measure Total ♯ of

Models

GMM1 [1] 0.4904 0.7463 0.5919 86400
GMM2 [2] 0.5075 0.9290 0.6564 86400
RMoG [7] 0.4296 0.9232 0.5864 9600
Our bg (3× 3) 0.9654 0.8924 0.9275 22034
Our bg+fg (3×3) 0.9157 0.9619 0.9347 24185
Our bg+fg (5×5) 0.9431 0.9549 0.9489 10106
Our bg+fg (9×9) 0.8623 0.9637 0.9102 4511

3.4. Variance Control

Original GMM is faced with variance degeneracy as pointed

out in [15]. The phenomenon is that the variance increases

until the component saturates the mixture by spanning over

the entire pixel color range. As a consequence, pixels are

constantly classified as either foreground or background, de-

pending on the weight of the Gaussian component. In our

approach, the pixels tend to be classified as background or

foreground models with the sharable mechanism, instead of

as different distributions of the same model. Hence, variance

degeneracy can be suppressed to some extent. However, due

to many-to-one relationship between pixels and models, we

adopt a random sampling strategy to update, which may ag-

gravate the variance degeneracy at some point. According

to our experiments, the change of pixels that are randomly

chosen is more smooth. Figure 3 gives an example of vari-

ance changes for the blue channel of a background model in

40k frames. Take a background model as example, when the

background is stable, smooth pixels are conducive to effec-

tively restrain the variance degeneracy. However, when the

background changes continuously or foreground objects have

similar color with background, these pixels are classified as

the same distribution with the background and variance in-

creases gradually. This is shown in Figure 3. Hence, we set

an upper limit for each model.

4. EXPERIMENTS

To evaluate the performance of the proposed approach, we

perform the experiments on the public ChangeDetection

benchmark 2014 [16], which provides a realistic, camera-

captured, diverse set of videos. A total of 53 video sequences

with human labeled ground truth are used for testing. The

video sequences are separated into eleven categories based

on different types of challenges shown in Table 3.

4.1. Experiments on Different Shared Region Size

This section reports the performance of our approach with

different size of shared regions. Since models are shared dy-

namically with a random update mechanism, the number of

sharable models changes with time. Take the sequence “of-

fice” as an example, we compare our approach with differ-

ent size of shared regions in Table 1. Additionally, we com-

pare with GMM [1], adaptive GMM [2], RMoG [7]. With

1/3 models compared to original GMM and adaptive GMM,

our approach achieves much better performance. with 9 × 9
shared region, our approach achieves better results with a half

number of models than RMoG. Furtherly, in Table 1 we can

see that the addition of foreground sharable models improves

precision but decreases recall a little. On the whole, the F-

measure is greatly improved due to more integral foreground.

With the increase of shared region size, the model number is

reduced. But too large shared region will degrade the perfor-

mance. In this paper, we set the shared region size as 5.

4.2. Experiments on Variance Control

In Table 2, we show the effects of variance control. We can

find that the recall increases with variance control, while the

precision in “highway” sequence decreases a little and the

precision in “turbulence3” sequence increases a little. The

F-measures of the two sequences are improved about 1% re-

spectively. This indicates that the effectiveness of variance

control against variance degeneracy. Generally, the variance

degeneracy occurs in background sharable models when the

background changes continuously. Thus, with the introduce

of variance control, the performance is improved.

4.3. Evaluation on ChangeDetection Benchmark

In this section, we report the performance of the pro-

posed approach on ChangeDetection benchmark 2014 [16].

The learning rate α is 0.01 for both background and fore-

ground. The shared regions of Camera jitter and

Dynamic Background are set as 9 and others are set as

5. And the other parameters are given in Section 3.



Table 3. F-measures for ChangeDetection benchmark [16]. BW: Bad Weather; Ba: Baseline; CJ: Camera Jitter; DB: Dy-

namic Background; IOM: Intermittent Object Motion; LF: Low Framerate; NV: Night Video; Sh: Shadow; Th: Thermal; Tu:

Turbulence; Overall is the average F-measure of 11 categories; Overall⋆ is the average F-measure except Shadow.

Approach Ba BW CJ DB IOM LF NV PTZ Sh Th Tu Overall Overall⋆

SuBSENSE[17] 0.9503 0.8619 0.8152 0.8177 0.6569 0.6445 0.5599 0.3476 0.8986 0.8171 0.7792 0.7408 0.7250

FTSG[18] 0.9330 0.8228 0.7513 0.8792 0.7891 0.6259 0.5130 0.3241 0.8832 0.7768 0.7127 0.7283 0.7128
CwisarDH[19] 0.9145 0.6837 0.7886 0.8274 0.5753 0.6406 0.3735 0.3218 0.8476 0.7866 0.7227 0.6812 0.6635
RMoG[7] 0.7848 0.6826 0.7010 0.7352 0.5431 0.5312 0.4265 0.2470 0.7212 0.4788 0.4578 0.5736 0.5588
GMM1[1] 0.8245 0.7380 0.5969 0.6330 0.5207 0.5373 0.4097 0.1522 0.7370 0.6621 0.4663 0.5707 0.5541
GMM2[2] 0.8382 0.7406 0.5670 0.6328 0.5325 0.5065 0.3960 0.1046 0.7322 0.6548 0.4169 0.5566 0.5390
Spec-360[20] 0.9330 0.7569 0.7142 0.7766 0.5609 0.6437 0.4832 0.3653 0.8187 0.7764 0.5429 0.6732 0.6553
KNN[21] 0.8411 0.7587 0.6894 0.6686 0.5918 0.5491 0.4200 0.2126 0.7788 0.6046 0.5198 0.5937 0.5856
KDE[3] 0.9092 0.7571 0.5720 0.5961 0.4088 0.5478 0.4365 0.0365 0.7660 0.7423 0.4478 0.5688 0.5454
SCSOBS[22] 0.9333 0.6620 0.7051 0.6865 0.5026 0.5463 0.4503 0.0409 0.7230 0.6923 0.4880 0.5961 0.5707

Proposed 0.9346 0.7791 0.8173 0.8673 0.7979 0.6664 0.4333 0.3734 0.8133 0.8254 0.8556 0.7421 0.7350

Input GT GMM1[1] GMM2[2] KDE[3] SuBSENSE[17] Proposed

Fig. 4. Visual comparison of foreground detection results.

Table 2. Comparison results of variance control.

Recall Precision F-measure

highway 0.9108 0.9305 0.9206
highway(with control) 0.9355 0.9270 0.9312
turbulence3 0.8000 0.8727 0.8348
turbulence3(with control) 0.8105 0.8741 0.8411

Table 3 presents the quantitative comparison of the pro-

posed approach in terms of F-measure to several state-of-

the-art approaches. Our approach achieves the best perfor-

mance in six of eleven categories. Note that the proposed

approach outperforms all the other approaches on the average

F-measure of 11 categories. However, the improvement is not

significant. This is because we do not consider shadow mod-

eling. With the Shadow is excluded, the improvement over

the state-of-the-art is more significant as shown in last col-

umn of Table 3. Moreover, the performance on Shadow can

be greatly improved with some shadow detection approach-

es, such as [23]. Although our approach only has a 1% gain

than SuBSENSE [17]. SuBSENSE needs about 135ms to

process a frame for 320 × 240 videos with the implementa-

tion [24], while our approach needs about 30ms. With an

effective sharable mechanism, our approach reduces by about

two third models than original GMM and achieves the best

performance at the expense of acceptable computational cost.

All programs run on a second generation Intel i7 CPU at 3.4

GHz with no architecture-specific instruction and saving out-

put frames on a local hard drive.

Figure 4 shows some visual comparisons of foreground

detection results. The foreground detection results of other



approaches are obtained with BGSLibrary [24]. In Figure

4, the first sequence is “highway” from Camera Jitter;

the second and third sequences are “fountain01” and “fal-

l” from Dynamic Background; the last sequence is from

Thermal. From these sequences, our approach presents ef-

fectiveness on removing nonstatic background and obtaining

integral foreground.

5. CONCLUSION

We propose a simple but effective approach to learn sharable

models for background subtraction. Through dynamically es-

tablishing many-to-one relationship between pixels and mod-

els, we allow pixels having similar feature to share the same

model. By jointly foreground modeling and random update,

our approach reduces more nonstatic background and ob-

tains more complete foreground. Experimental results show

that our approach outperforms the state-of-the-art methods on

ChangeDetection Benchmark 2014.
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