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Recognition of the Temperature Condition
of a Rotary Kiln Using Dynamic Features

of a Series of Blurry Flame Images
Hua Chen, Xiaogang Zhang, Pengyu Hong, Hongping Hu, and Xiang Yin

Abstract—Maintaining a normal burning temperature is
essential to ensuring the quality of nonferrous metals and
cement clinker in a rotary kiln. Recognition of the tempera-
ture condition is an important component of a temperature
control system. Because of the interference of smoke and
dust in the kiln, the temperature of the burning zone is
difficult to be measured accurately using traditional meth-
ods. Focusing on blurry images from which only the flame
region can be segmented, an image recognition system for
the detection of the temperature condition in a rotary kiln
is presented. First, the flame region is segmented employ-
ing a region-growing method with a dynamic seed point.
Seven features, comprising three luminous features and
four dynamic features, are then extracted from the flame
region. Dynamic features constructed from luminous fea-
ture sequences are proposed to overcome the problem of
mis-recognition when the temperature of the flame region
changes rapidly. Finally, classifiers are trained to recognize
the temperature state of the burning zone using its features.
Experimental results using real datasets demonstrate that
the proposed image-based systems for recognizing the
temperature condition are effective and robust.

Index Terms—Blurry flame image series, dynamic
features, luminous features, temperature condition
recognition.

I. INTRODUCTION

T HE ROTARY kiln is widely used in metallurgical, refrac-
tory material, and chemical industries, such as the cement

and aluminum sintering factories. The kiln typically consists of
a refractory steel cylinder having a diameter of 4–5 m and a
length of about 90–110 m. An aluminum rotary kiln can pro-
duce about 500–800 tons of sinter per day. The kiln is rotated
continuously by a powerful electrical motor and the tempera-
ture in the hottest internal part of the kiln can reach 1400 ◦C.
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After a series of physical changes and chemical reactions, the
raw materials burned with coal powder inside the kiln are turned
into sinter. To achieve the optimum sintering quality, the tem-
perature inside the kiln and especially that in the burning zone
has to be controlled within a certain range. The temperature
should be high enough to guarantee normal material sinter-
ing process. However, if the temperature is too high, materials
will be burned sooner than the planned time, and the clinker
will become sticky. This condition is referred to as the super-
heated condition [1]. In contrast, if the temperature is too low,
the materials will not be melt in time and remain solid. This
condition is referred to as the super-chilled condition. Super-
heated and super-chilled conditions are abnormal conditions
that produce inferior products and can even halt production. It
is therefore vital to maintain an optimum temperature condition
and to avoid temperature fluctuations in a rotary kiln.

The temperature of a kiln is affected by many factors, such as
the material load, water content, components of the raw mate-
rial slurry, and coal heat value. As the temperature varies, the
kilnman needs to adjust the quantity of coal fed to control
the temperature. Hence, it is essential to accurately measure
the temperature in the burning zone. The burning zone in an
inclined rotation cylinder is about 10–15 m from the peephole
of the discharge port (shown in Fig. 1). The kiln is full of
smoke and dust. Conventional temperature measurement sys-
tems, such as infrared radiation systems, thermocouple systems,
and colorimeter systems, do not work well under such con-
ditions because they are affected by dust and smoke inside
the kiln. In addition, it can be difficult to deploy them due
to the rotational structure of the kiln. Over the past several
decades, the temperature conditions of the rotary kiln are usu-
ally judged by the kilnman using the video captured from a
digital camera in a manual manner. In recent years, a number
of techniques for automatically monitoring and controlling the
rotary kiln have been developed to detect abnormal conditions
by analyzing thermotechnical signals captured by sensors. Five
thermotechnical parameters (including the material feed rate,
fuel feed rate, and kiln speed) have been used to build a model
for detecting super-heated and super-chilled conditions [1]. A
locally linear neuro-fuzzy model has been trained and three dis-
tinct models have been developed to detect ringing and coating
conditions [2].

Because of the long lag of the complex physicochemi-
cal reaction processing in the cylinder, there is a time delay
for the thermotechnical-signal-based recognition system. In
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Fig. 1. Motion of granules in the kiln and the sintering process in a rotary
kiln.

recent years, researchers have been exploring image processing
techniques for more timely determination of the temperature
condition and the feeding control of coal. Image-based methods
are quicker and more direct than the thermotechnical-signal-
based methods in determining the temperature condition. A set
of heterogeneous features and fusion techniques was used to
construct a flame-based sinter burning state recognition system
[3], which compared ensemble learner models with four types
of base classifiers and five fusion operators. First- to fourth-
order-statistic hue, saturation and intensity data of the flame
image of the rotary kiln were used in a multivariate regres-
sion model to measure nitrogen oxides in a rotary kiln [4].
The texture features of the clinker region were used to classify
the sintered clinkers into different qualities [5]. Additionally,
a five-dimensional feature vector extracted from the material
region was used as the input of a robust extreme learning
machine (ELM) to recognize the sintering state of a clinker
[6]. Temperature distributions and the repose and filling angles
were obtained by employing an image processing system and a
custom-built infrared camera to optimize the Waelz process for
zinc recycling [7].

Most of the image-based methods mentioned above use clear
images. The material region can be easily segmented out from
the clear image for predicting the temperature conditions using
the color and gray-level statistic features of the material region.
However, most rotary kilns for cement and aluminum produc-
tion use coal powder as fuel. They are often full of smokes and
dusts because of coal combustion. In our on-site application,
most images captured by an industry-grade camera mounted
on the discharge port of the kiln are blurry owing to the pres-
ence of dust particles in the kiln. The material region in the
image is indistinguishable and difficult to be segment out. The
most prominent region in a blurry image is the flame region.
The flame is formed by the combustion of mixed coal pow-
ders and air, so the geometry and intensity of the flame provide
instantaneous information of the quality and performance of the
burning process. Many techniques that adopt advanced optical
sensing, digital image processing, and soft computing algo-
rithms have been developed to study the geometry and intensity
of a flame in both laboratory and industrial environments for
a variety of applications, especially in the application field of
the boiler [8]–[11]. Different from the boiler applications where
the temperature of the flame can be detected quantitatively,
the nature of a rotary kiln makes quantitative measurement of

Fig. 2. CCD installation environment.

temperature challenging because of the problem with installing
a camera onto the rotational structure of the kiln. Disturbances
in image signals due to smokes and dusts also cause severe
problems that greatly affect the accurate measurement of the
temperature in a rotary kiln.

In this work, we propose a new method for recognizing
the temperature condition based on the blurry images obtained
from the inside of rotary kilns, from which the material regions
cannot be successfully segmented. Seven features (three lumi-
nous features and four dynamic features) are extracted from the
flame image series, and are used to build a robust and effec-
tive condition recognition system for rotary kilns. Section II
describes the image acquisition system and segmentation of
image. The image features used by the classifier are discussed
in Section III. Experimental results are presented in Section IV,
which is followed by conclusion in Section V.

II. SYSTEM SETUP AND IMAGE PROCESSING

The flowing motion of the granules and the sintering process
in the kiln are shown in Fig. 1. During sintering production, raw
materials are fed into the kiln from the feed port of the cylin-
der and coal powder is fed from the discharge port. Generally, a
kiln is no more than 30% filled with material. The kiln inclines
along its length at an angle to the horizontal of a few degrees
and rotates around its axis slowly at a rotation speed of about
1 revolution/60–80 s [12]. The sintering in the kiln is finished
with the revolution of the cylinder, and the sinter flows contin-
uously from the feed port to the discharge port as a result of the
inclination and rotation of the cylinder. A color charge-coupled
device (CCD) camera is installed in the peephole of the dis-
charge port of the kiln (see Fig. 2) and it is in an environment
full of suspended coal and dust particles. The output signal of
the CCD is digitized using an image grabber card. Each digital
image has dimensions of 704× 576 pixels, with each pixel hav-
ing red (R), green (G), and blue (B) components. The sampling
frequency of the CCD video camera is 25 frames/s.

Some typical flame image series recorded for a rotary kiln in
a large aluminum plant in China are shown in Fig. 3. To segment
the flame region out quickly, red, green, and blue (RGB) images
are converted to gray-level images first. In practical application,
the RGB image is converted to a gray-level image according to
[11] by the following equation:

I = 0.30R+ 0.59G+ 0.11B. (1)
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Fig. 3. Blurred images of the burning zone along the axis of the rotary
kiln.

Fig. 4. (a) RGB flame image. (b) Gray-level image I. (c) Denoised
image Ig .

There is inherent noise in the flame image acquisition due
to dust and interference from the industrial environment. For
example, a video signal may be easily disturbed by an electri-
cal fluctuation generated by the ON–OFF operation of the drive
motor and by poor contact between the camera and power cable.
Fig. 4(a) shows an RGB flame image with stripe interference
noise. To reduce noise, a median filter defined as

f(x, y) = median{I(s, t)} (s, t) ∈ S(x, y) (2)

is applied to a gray-level image I , where I(s, t) denotes the
intensity of a pixel at (s, t) within the mask S(x, y), which
is centered on (x, y), and f(x, y) denotes the result after the
median filtering. Considering the magnitude of the stripe noise
in this paper, the window size of the median filter is 50× 50
pixels. Fig. 4(c) shows the denoised image Ig obtained by
gray-level image I .

A region-growing method [13] is applied to segment the
flame region. As mentioned above, the flame region is located
at the center of the image and it is the brightest region in
the image. The region-growing algorithm uses a dynamic seed
point μseed, which is determined as follows.

1) The brightest region IB is found from the pixels whose
gray level is greater than B, where B is determined as

B = 0.95×max{f(x, y)} (x, y) ∈ Ig. (3)

2) The centroid of IB is then used as μseed, whose coordi-
nates (xc, yc) are computed as

xc =

M∑
i=1

fi(x, y)xi

M∑
i=1

fi(x, y)

(4)

yc =

M∑
i=1

fi(x, y)yi

M∑
i=1

fi(x, y)

. (5)

Fig. 5. (a) Brightest region IB and the seed point. (b) Flame region ID
computed by region growing.

Fig. 6. (a) Gray-level image Ig . (b) Segmented binary images after
applying the region-growing algorithm.

The region-growing algorithm gradually incorporates pix-
els into region ID if a pixel f(x, y) satisfies the similarity
constraint

|f(x, y)− μseed| ≤ T. (6)

The threshold T = 13 is chosen as the optimal threshold
according to experimental results. The segmentation process for
the image in Fig. 4(c) is shown in Fig. 5. The segmentation
results for the images in Fig. 3 are shown in Fig. 6.

III. FEATURE EXTRACTION

Feature extraction is vital to the recognition of temperature
conditions. According to previous research [14] and the expe-
rience of operational experts, two categories of features are
extracted from single image and image series to train the clas-
sifier for the recognition of the temperature state: luminous
features and dynamic features.

A. Luminous Features

Luminous features characterize the luminous intensity
parameters of a flame qualitatively and quantitatively to some
extent [14]. Luminous features include the average brightness
of the flame region, the average brightness of whole image, and
flame abundance. They are computed as follows.

1) The average brightness of the flame region is

f1 = G =
1

H

H∑
i=1

fi(x, y) fi(x, y) ∈ ID (7)
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where ID represents the segmented flame region and H
is the area of the flame region, which can be computed by
counting the number of the pixels falling inside ID.

2) The average brightness of whole image is

f2 = M =
1

S

S∑
i=1

fi(x, y) fi(x, y) ∈ Ig (8)

where Ig is the gray-level image and S is the area of the
whole image, which can be computed by counting the
number of pixels falling inside Ig . In this paper, the image
size is 704× 576 pixels, and S is, therefore, 40 504.

3) The flame abundance is

f3 = A =
H

S
. (9)

The flame abundance is the ratio of the area of the flame
region to the area of the whole image, and reflects the occu-
pation level of the flame region.

Normally, there is positive correlation between luminous
features and the temperature of the kiln. The higher the tem-
perature is, the greater the values of luminous features become.
However, there are sometimes exceptions. To explain this prob-
lem, a 10-min video of a flame, recorded in the burning zone
with a digital video camera at a frame rate of 25 frames per
second in an industrial aluminum rotary kiln, was used in the
following experiment. The video includes conditions varying
from normal to super-chilled, with the super-chilled condition
starting at about the 7000th frame. The G, M , and A curves
of each frame of the image are shown in Fig. 7. During the
first 4 min, the temperature remains normal, and the values of
G, M , and, A fluctuate slightly around a mean value, while
in the following 6 min, when the temperature decreases, the
values fluctuate violently but do not become small. There is
no positive correlation between the temperature and the lumi-
nous features at this time. It is thus difficult to identify the
temperature condition from the luminous features of single
image.

There are two main possibilities for the cause of error
recognition if only luminous features from a single image are
used.

1) When the temperature in the burning zone of a kiln is
normal and stable, the coal combustion flame flicks regu-
larly, and the values of the luminous features thus remain
relatively stable and fluctuate little. When the tempera-
ture varies, especially when it decreases, the flame dances
strongly and the values of luminous features fluctuate
violently. There is no positive correlation between lumi-
nous features and temperature at this time. For example,
when the temperature varies, there is sometimes detona-
tion [shown in Fig. 8(a)], which may result in a higher
value of the luminous feature extracted from the sin-
gle flame image at this time, but the real temperature
condition is super-chilled.

2) There is much smoke and dust inside the rotary kiln, and
inherent noise is readily added to the flame image in the
process of acquisition and transmission. This may lead
to the inaccurate segmentation of the flame image, and

Fig. 7. Luminous feature sequences. (a) G(i) sequence curve. (b) M (i)
sequence curve. (c) A(i) sequence curve.

Fig. 8. (a) Detonation image. (b) Image with dust and fog noise.
(c) Image with unknown noise.
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Fig. 9. Short-time energy of (a) G(i), (b) M(i), and (c) A(i).

the luminous features extracted from a single image thus
do not reflect the temperature condition exactly. Fig. 8(b)
shows an image captured under a normal temperature
condition. The flame is obscured by smoke and dust and
the flame region cannot be segmented accurately. Fig. 8(c)
shows the inaccurate segmentation of images with other
unknown noise.

The above discussion demonstrates that luminous features
extracted from a single frame of an image are not sufficient
for recognition of the temperature condition. Other features are
needed to analyze the complex situation. According to the expe-
rience of operational experts, the flickering frequency of the
flame might be an indication of combustion stability. Therefore,
dynamic features could be extracted from the luminous feature
sequence of the flame image.

B. Dynamic Features

Dynamic features extracted from the feature sequence
include the short-time energy and sample entropy of the lumi-
nous feature sequence.

1) Short-Time Energy: Short-time energy is used to dis-
tinguish the voiced or silent signal [15], [16] over a long
period of time. It is defined as the sum of the squared
amplitude of voice samples in a frame. For a data series
{x(i)} = x(1), x(2), . . . , x(n), the short-time energy mea-
sured at moment t is defined as

Ex(t) =

t∑
i=t−(N−1)

[x(i)w(t− i)]
2 (10)

where N is the window width and w(t− i) is the window func-
tion. When a rectangular window is used, (10) is simplified as

Ex(t) =

t∑
i=t−(N−1)

x(i)
2
. (11)

The short-time energy of G (EG(t)) in the tth frame
image is computed as follows. (1) The G values of N
images (I(t−N + 1), I(t−N + 2), . . . , I(t)) are computed
to form a data sequence {G(i)} = G(t−N + 1), G(t−N +
2), . . . , G(t). (2) The EG(t) is computed as

EG(t) =

t∑
i=t−(N−1)

G(i)
2
. (12)

M(i) and A(i) sequences are formed in the same man-
ner as the G(i) sequence: {M(i)} = M(t−N + 1),M(t−
N + 2), . . . ,M(t) and {A(i)} = A(t−N + 1), A(t−N +
2), . . . , A(t). The short-time energies of M and A are thus
computed as

EM (t) =

t∑
i=t−(N−1)

M(i)
2 (13)

EA(t) =
t∑

i=t−(N−1)

A(i)
2
. (14)

In this test, N = 1000 is used, and the curves of short-time
energy are, therefore, from the 1001th frame to the 15 000th
frame. The curves of EG(t), EM (t), and EA(t) are shown in
Fig. 9.

For the curve of EM (t), there is an obvious difference
between the first part (1001st–7000th frame) and the latter part
(7001st–15 000th frame). The first part is under the normal tem-
perature condition that is associated with higher regularity of
M(i), and EM (t) of the first part is thus smaller than that of
the latter part under the super-chilled condition. The trend of
EA(t) is the same as that of EM (t). So, we take EM (t) and
EA(t) as f4 and f5 of the tth frame.

2) Sample Entropy: Sample entropy (SampEn) is a fam-
ily of statistics proposed by Richman and Moorman (2000)
[17]. It is similar to approximate entropy [18], but it has bet-
ter precision and is sensitive to changes in the complexity of
the data. SampEn quantifies the complexity of time-series data
and can be applied to short-length time-series data. It is resistant
to short-strong transient interferences (outliers) such as spikes.
These characteristics mean that sample entropy is widely used
in the nonlinear analysis of time-series data.

For N data from a data series {x(i)} = x(1),
x(2), . . . , x(N), two parameters are first defined: m is
the embedded dimension of the vector to be formed and r is a
threshold, which serves as a noise filter. The sample entropy
can be calculated as follows.

1) In sequential order by serial number, a set of
m-dimensional vectors is composed as

Xm(i) = [x(i), x(i+ 1), . . . x(i+m− 1)]

1 ≤ i ≤ N −m+ 1. (15)

2) d[Xm(i), Xm(j)] is defined as the maximum distance
between vectors xm(i) and xm(j) and is expressed as
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Fig. 10. Sample entropy of G(i), M (i), and A(i).

Fig. 11. Curves of EM (t) with different window widths. (a) N = 200. (b) N = 500. (c) N = 800. (d) N = 1000. (e) N = 1200. (f) N = 1500.

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(|x(i+ k)− x(j + k)|).
(16)

3) Given a threshold r, for a given xm(i), the num-
ber of j (1 ≤ j ≤ N −m, j �= i) is counted, such that
d[xm(i)xm(j)] ≤ r. This number is denoted Bi and
expressed as

Bi
m(r) =

1

N −m− 1
Bi. (17)

4) For parameter m,

Bm(r) =
1

N −m

N−m∑
i=1

Bi
m(r). (18)

5) The number of dimensions is increased as m = m+ 1
and Ai is used to denote the number of xm+1(i) within
r of xm+1(j), where j ranges from 1 to N −m(j �= i).
Ai

m(r) and Am(r) are then defined as

Ai
m(r) =

1

N −m− 1
Ai (19)

Am(r) =
1

N −m

N−m∑
i=1

Ai
m(r). (20)

Bm(r) thus represents the probability that two sequences
match for m points, whereas Am(r) represents the probability
that two sequences match for m+ 1 points.

Theoretically, the sample entropy of this sequence x(n) is

SampEn(x) = ln

[
Bm(r)

Am(r)

]
. (21)

The sample entropy of G (SampEn(G(t))) in the tth
frame is computed as follows. 1) The G values of N
images (I(t−N + 1), I(t−N + 2), . . . , I(t)) are computed
to form a data sequence {G(i)} = G(t−N + 1), G(t−N +
2), . . . , G(t). 2) SampEn(G(t)) is computed using (15)–(21).
Therefore, the sample entropies of M (SampEn(M(t))) and
A (SampEn(A(t))) are computed as SampEn(G(t)) by fol-
lowing steps 1) and 2). The corresponding curves are shown in
Fig. 10. The sample entropies of G(i) and M(i) reflect the fluc-
tuation of the feature sequence better. The sample entropies of
Gt and Mt are, therefore, used as the features f6 and f7.

3) Parameter Selection of Dynamic Features:
a) Window width of short-time energy: Different win-

dow widths are used to compute EM (t), and the relevant curves
are shown in Fig. 11. Here, N takes different values, i.e., 200,
500, 800, 1000, 1200, and 1300. When N is larger than 800,
the difference between the first half and latter half of a curve is
more obvious.
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Fig. 12. Curves of SampEn(M(t)) with a sampling rate of 25 fps. (a) N = 1000. (b) N = 1500. (c) N = 2000. (d) N = 2500. (e) N = 3000.
(f) N = 3500.

TABLE I
SAMPLE ENTROPY COMPUTING TIME WHEN USING DIFFERENT

WINDOW WIDTHS N (WITH 25 FPS)

b) Sampling rate and window width of sample entropy:
The value of sample entropy is relevant to the values of m and
r, whose selection standards are r = (0.10− 0.5)SD, m = 1
or 2 [19], [20]. Here, SD denotes the standard deviation of the
data sequence x(i). This paper uses the parameters r = 0.5 and
m = 2. The window width N is a key parameter for SampEn
in different applications. In our experiment, different window
widths are used to compute SampEn, and the relevant curves
are shown in Fig. 12. Here, N takes different values, i.e., 1000,
1500, 2000, 2500, 3000, and 3500. When N is larger than 2000,
there is an obvious difference between the first half and lat-
ter half of a curve. Table I gives the different computing times
when using different window widths. It is seen that a wider
window results in a longer computing time. The test is run
on a personal computer with an Intel Core (i3-4150) central
processing unit running at 3.5 GHz with 4 GB of RAM.

To speed up the calculation, different sampling rates of data
are used for the test. Three-thousand frames are extracted from
Fig. 7(b) at a 5-fps sampling rate, and the data curve of M(i) is
shown in Fig. 13. Different values of N ′ (i.e., 200, 300, 400,
500, 600, and 700) are used to compute SampEn(M(i)) in
Fig. 13, and the resulting curves are shown in Fig. 14. The
corresponding computing are given in Table II. The trend of
curves in Fig. 14 is the same as that of curves in Fig. 12 when
the parameter N is five times N ′, but the computing time in
Table II is much shorter than that in Table I. Therefore, consid-
ering the effect of the computing time, five frames per second is
chosen as the sampling rate and the window width N is chosen
as 500 for SampEn computing.

Fig. 13. Curve of M (t) with a sample rate of 5 fps.

The period of temperature condition conversion depends on
parameters of the kiln such as components of the raw mate-
rial slurry, the kiln’s bricks and shells, and the coal heat value.
Experiments in this paper are based on video collected for no. 6
rotary kiln by the ZhongZhou Aluminum Corporation in China.
Therefore, if changing to another rotary kiln, the window width
should be adjusted to fit the kiln’s parameters.

IV. EXPERIMENTAL RESULTS

Five 10-min videos recorded for the No. 6 rotary kiln of
ZhongZhou Aluminum Corporation in China are used as train-
ing data. Those videos cover three temperature conditions—
normal, super-chilled, and super-heated conditions—as labeled
by an experienced kilnman. Image series are extracted from
the video at a sampling rate of 5 fps, giving a total of 15 000
typical images extracted from video. Each image has dimen-
sions of 704× 576 pixels with an RGB color mode. The
features extracted from a single frame and dynamic features
obtained from the dynamic features sequence are computed.
The parameters of the dynamic feature setting are described
in Section III. The window width N is set as 500. Each
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Fig. 14. Curves of SampEn computed from Fig. 13 with a sample rate of 5 fps. (a) N ′ = 200. (b) N ′ = 300. (c) N ′ = 400. (d) N ′ = 500. (e) N ′ =
600. (f) N ′ = 700.

TABLE II
SAMPLE ENTROPY COMPUTING TIME WHEN USING DIFFERENT

WINDOW WIDTHS N ′ (WITH 5 FPS)

flame is thus characterized by a vector including seven fea-
tures (f1, f2, . . . , f7) and 12 500 training samples are obtained
from the image series (2547 samples for super-heated condi-
tion, 6386 samples for normal condition, and 3567 samples
for super-chilled condition). Test data are taken from another
two 10-min videos. Six-thousand frames are extracted from the
videos and a total of 5000 testing samples are generated in the
same way (1352 samples for the super-heated condition, 2102
samples for the normal condition, and 1546 samples for the
super-chilled condition).

Classifiers of an ELM [21] and support vector machine
(SVM) [22] are employed to recognize the temperature condi-
tion. For the ELM classifier, the activation function used in our
paper is sigmoid function g(x) = 1/(1 + exp(−x)). Because
the input weights and hidden layer biases of the ELM are cho-
sen randomly, the number of hidden nodes is the only key
parameter which is sensitive to the performance. The opti-
mal number of nodes for ELM is selected based on 10-fold
cross-validation method. For each tried number of nodes, the
training sets are randomly divided into ten subsets of equal
size, then one subset is used as validation set which is tested
by the classifier trained on the remaining nine subsets. The pro-
cess is repeated ten times with each of the subset used exactly
once as the validation set. The ten results then are averaged
to produce a single estimation. The number of hidden nodes
is gradually increased from 5 to 100 by interval of 5. Each
value is tried based on the above 10-fold cross-validation pro-
cess and the optimal hidden nodes number of ELM is chosen
as 45 for the best cross-validation accuracy. For the SVM, the
radial basis function K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0
is used as kernel function. There are two parameters for SVM

TABLE III
RESULTS OBTAINED USING ELM AND SVM WITH SEVEN FEATURES

needed to be tuned: penalty parameter C and kernel parameter
γ. Grid-search using 10-fold cross-validation [23] is imple-
mented to find out the best C and γ. A exponentially growing
sequences of C(2−5, 2−4, . . . , 25) and γ(2−5, 2−4, . . . , 25) are
tried and the optimal parameters are set as C = 32 and γ = 16
for the best cross-validation accuracy. The simulations for ELM
are carried out using ELM MATLAB-code package.1 For SVM
compiled C-coded SVM packages, LIBSVM2 is used. All the
simulations for the ELM and SVM algorithms are carried
out in MATLAB R2013a environment running on a personal
computer with an Intel Core (i3-4150) central processing unit
running at 3.5 GHz with 4 GB of RAM.

The final ELM and SVM classifiers are developed using
the complete training set. They are retrained with the optimal
parameters by all the training datasets and are used to classify
the temperature condition on the testing set. Average classifica-
tion accuracy obtained for 50 trials of two classifiers is given in
Table III. Table III shows that both classifiers achieved recog-
nition accuracy of more than 85%. The results demonstrate
the effectiveness of the condition recognition system proposed
in this paper. The confusion matrix of an SVM classification
experiment is shown in Table IV. The classification accuracy of
super-chilled (89.3%) is higher than that of normal (85.5%) and
super-heated condition (82.9%), because the dynamic feature
can represent the fluctuation properties of super-chilled, which
cannot be represented by luminous features.

For further comparison, the recognition results achieved with
only three luminous features (f1, f2, f3) are given in Table V.

1Available: [Online] http://www.ntu.edu.sg/home/egbhuang/elm_codes.html.
2Available: [Online] https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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TABLE IV
CLASSIFICATION CONFUSION MATRIX OF SVM

TABLE V
RECOGNITION ACCURACY WITH THREE OR FIVE FEATURES (%)

The recognition accuracy when using three features is much
lower than that when using seven features. The results show the
effectiveness of using the seven features chosen in this paper.
The experimental results obtained using five features (three
luminous features and two dynamic features) are also shown
in Table V. Actually, using two dynamic features and luminous
features is sufficient for the recognition of a varying condition,
especially when using short-time energy. When using the sam-
ple entropy with luminous features, because of the time lag of
the sample entropy, the testing accuracy is a little lower than
that when using short-time energy.

V. CONCLUSION

Determining the temperature in the burning zone is essen-
tial to the quality control of sintering of rotary kilns. We have
showed that digital blurry images of the burning zones can be
used to determine the temperature states of a rotary kiln. It is
challenging to segment out the material zone in such blurry
images. Our method extracts seven features from the flame
region series and uses them to train temperature condition rec-
ognizers. Experimental results show that our method is effective
and robust. In the future, we will explore the possibility of com-
bining image characteristics with on-site thermo-technical data
to better recognize temperature conditions in the burning zone
of a rotary kiln.
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