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Abstract

This paper approximates the 3D geometry of a scene by
a small number of 3D planes. The method is especially
suited to man-made scenes, and only requires two calibrated
wide-baseline views as inputs. It relies on the computa-
tion of a dense but noisy 3D point cloud, as for example
obtained by matching DAISY descriptors [35] between the
views. It then segments one of the two reference images,
and adopts a multi-model fitting process to assign a 3D
plane to each region, when the region is not detected as
occluded. A pool of 3D plane hypotheses is first derived
from the 3D point cloud, to include planes that reasonably
approximate the part of the 3D point cloud observed from
each reference view between randomly selected triplets of
3D points. The hypothesis-to-region assignment problem is
then formulated as an energy-minimization problem, which
simultaneously optimizes an original data-fidelity term, the
assignment smoothness over neighboring regions, and the
number of assigned planar proxies. The synthesis of inter-
mediate viewpoints demonstrates the effectiveness of our
3D reconstruction, and thereby the relevance of our pro-
posed data fidelity-metric.

1. Introduction

Estimating the 3D model of a scene from images
captured by widely separated cameras offers two
advantages compared to its estimation from small-
baseline stereo. First, the 3D estimated from trian-
gulation in wide-baseline setups is less impacted by
unprecise correspondences or calibration inaccuracies
than in small-baseline ones [17]. Second, 3D recon-
struction from widely separated views results in 3D
models that are consistent with a wider range of view-
points, thereby enabling to synthesize a larger range
of virtual views of the scene. However, the large oc-
clusions and strong (projective) deformations affect-
ing wide-baseline views make the determination of
a dense matching much more challenging than in its
small-baseline counterpart. For this reason, most of

the state-of-the-art multi-view stereo (MVS) methods
still rely on a dense network of small-baseline stereo
pairs [1] [23] [36] to estimate the 3D, even if the two
outermost cameras might form a wide-baseline stereo
pair. Due to cost or practical deployment constraints,
it is however not always possible to install many cam-
eras around the scene. To address the reconstruction
problem in sparse acquisition setups, our paper pro-
motes the use of prior knowledge about the 3D geom-
etry of the scene. Namely, it proposes a solution to re-
construct a scene from only two wide-baseline views,
in cases for which the 3D scene exhibits a piecewise-
planar geometry, as often encountered in man-made1

scenes.

Our piecewise-planar reconstruction is formulated
as a 3D planes assignment problem over the 2D re-
gions that are obtained in one of the two reference im-
ages based on a color segmentation [40]2. In contrast
to most previous works dealing with wide-baseline
setups [4] [1] [27], our method builds upon a dense
3D point cloud3, instead of a sparse set of correspon-
dences between keypoints. Although dense point
clouds offer the advantage to provide 3D cues for
challenging surfaces, e.g., textureless or with repeti-
tive patterns such as paved floors, they are generally
much more corrupted by noise and 3D outliers than
sparse ones. This noise makes it ineffective to directly
fit planar models to the cloud. Therefore, our method
first derives a set of planar hypotheses from the cloud,
and then assigns them to the image regions. The as-
signment is done by optimizing an energy function
that favors (i) assignment smoothness across neigh-
boring regions, (ii) consistency between the assigned
models and the dense point cloud, and (iii) sparsity
of plane models. The success of our approach funda-

1A man-made scene is composed of manufactured 3D objects,
which are observed by real cameras.

2In practice, the parameters of the segmentation are tuned to
oversegment the image, so that it becomes unlikely that pixels that
belong to the same region lie on distinct planar surfaces.

3We define a dense point cloud as a set of 3D points whose pro-
jection fully covers (at least one of) the reference images.
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mentally depends on the capacity to derive accurate
planar models hypotheses, and on the definition of a
data fidelity metric that is able to deal with the noise
inherent to the dense cloud. Overall, the main con-
tributions of our proposed plane hypotheses assignment
method are:

• A method to define, from a dense but noisy point
cloud, a set of 3D plane hypotheses that includes
most of the planar surfaces composing the 3D
scene, while having a small cardinality (Section
3).

• A plane-to-region data-fidelity metric that ac-
counts for the inaccuracy and ambiguity of the
matching inherent to a dense 3D point cloud con-
struction (Section 4).

• An energy-driven formulation of the plane-to-
region assignment problem, which maximizes the
data-fidelity and the smoothness of the plane as-
signment over the regions, while minimizing the
number of assigned planes. This last term guar-
antees to approximate the 3D with a small num-
ber of planes, without having to fix this parame-
ter a priori or having to merge many similar plane
models a posteriori, as done in [4] (Section 5).

To the best of our knowledge, our work is the first
one to approximate the 3D of a scene based on pla-
nar proxies that are estimated from a dense 3D point
cloud in a way that explicitly balances the approxima-
tion error and the number of planar models covering
the scene. Our validation demonstrates that it results
in an accurate, low complexity 3D representation of
the scene, perfectly adapted for light-weighted stor-
age and transmission.

2. Related works

Many previous works have considered images to
reconstruct the 3D of a scene. Their findings and ob-
servations have largely inspired and motivated our
approach.

The most mature approaches are the ones estimat-
ing the 3D of a from small-baseline stereo. They have
been extensively evaluated through the Middlebury
challenge. Several of the top-ranked algorithms [25]
[26] rely on image segmentation. Working at the re-
gion level has been proven to increase the robustness
of the matching data-fidelity [18] [21] while effectively
propagating depth information from textured to am-
biguous regions [44]. We have thus adopted a region-
based paradigm in our wide-baseline setup as well.

In contrast to small-baseline stereo, the reconstruc-
tion from wide-baseline images offers the advantage

to generate 3D models that are consistent with a large
range of view angles. It also benefits from more ac-
curate triangulation, but suffers from severe occlu-
sions , photometric and geometric deformations be-
tween the views. Therefore, the related previous art
generally require many (≫ 2) images to either de-
rive a few reliable correspondences [38], or to fuse
multiple depth-maps together [14] [43]. Moreover,
most of those methods disambiguates the matching
based on a strong regularization, which tends to over-
smooth the depth [32] [31] [2], or even to propagate it
to wrong pixels when the image gradient is not suffi-
cient at the 3D structure’s border [6]. As an alterna-
tive to depth-maps fusion, plane-sweeping methods
investigate multiple depth hypotheses by sweeping a
plane [7] through the 3D space, either orthogonally to
one of the camera’s axis [3] [16] or along a few princi-
pal directions [12]. Although their GPU-based imple-
mentations achieve real-time performances [42] [24]
[15], plane-sweeping assumes the Manhattan world
hypothesis, i.e., that the 3D surfaces are orthogonal to
the sweeping directions.

To avoid multiplying the number of views or rais-
ing the Manhattan world assumption, many authors
have proposed to constrain the 3D reconstruction
based on geometric primitives. Typically, they first es-
timate a sparse (and hopefully less noisy) 3D points
cloud from the matching of salient points in image
pairs [1] [29] [30] [28], and then fit 3D primitives to
those points. The fitting can be direct, e.g. based on a
RANSAC-based approach(es) [10] [45], or indirect, e.g.
based on the detection of line segments or vanishing
directions [41] [37]. Those methods only achieve good
reconstruction when either multiple small-baseline in-
put views are available [41], or manual interactions
are tolerated to specify high-level scene informations
[20] [23] (e.g. ajacency, alignment, regularity, etc.).
To alleviate those drawbacks, the so-called “propose-
and-assign” approaches have been considered. In-
stead of directly fitting primitives to the data, they first
derive a number of 3D primitive candidates, which
are then assigned to the parts of the sparse 3D point
cloud they best approximate. In this formulation, the
assignment is handled globally over the whole scene,
through an energy-minimization process. Under the
piecewise-planarity assumption, the primitives corre-
spond to 3D planes [27], and a Markov-Random-Field
(MRF) formulation is considered to propagate the as-
signment to the pixels that are not represented in the
sparse point cloud. For increased robustness, Bodis
et al. [4] have recently proposed to lift-up the reg-
ularized assignment at the region level. In their ap-
proach, a plane candidate is assigned to each region,
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and the number of proposed models is reduced a pos-
teriori by merging the most similar ones. Their re-
markable method strongly accelerates the reconstruc-
tion, from many minutes to a few seconds, due to
the small amount of treated regions and their ab-
stinence from using any expensive photoconsistency
computation [22]. In practice, assigning planes to re-
gions rather than to pixels however suffers from a
main drawback: regions that are not represented in
the sparse point cloud, and that do not have a MRF
neighbor with similar planar structure, can not be
modeled properly. This happens frequently in large
and uniform regions presenting repetitive and non-
discriminant patterns, like grass/floor planes. More
generally, defining regions is an issue for methods that
build on a sparse point cloud: too large regions vi-
olate the region planarity assumption [44], while too
small regions might not have associated 3D points,
meaning that their 3D can not be inferred. Our work
overcomes this issue by adopting a dense point cloud
as input 3D cues. A few previous works have also
adopted a piecewise-planar assumption to fit multi-
ple planes to a dense cloud. They however generally
need a reliable dense 3D point cloud, which in turns
requires many views: the impressive work in [11] and
in [1] build respectively on 3 million and a few hun-
dred thousands images. Far from those huge number
of views, [13] uses the depths obtained from ten im-
ages (spread on approximatively 5 meters) to fit pla-
nar hypotheses on segmented regions, but relies on
application-dependent priors, embedded in classifiers
that are trained from manually labeled data. As illus-
trated in Section 1 of the supplementary material, es-
timating the 3D planes independently on each region
without those application-dependent priors appears to
be too sensitive to the strong noise inherent to a den-
se point cloud derived from a few wide-baseline pairs.

Our region-based plane assignment method offers
thus a unique asset in that it requires only two wide-
baseline views to determine an accurate piecewise-
planar approximation of man-made scenes. It relies
on dense point cloud estimation to properly deal with
surfaces containing few discriminant salient points,
but introduces an original data-fidelity metric and
considers a multi-model fitting method to deal with
the strong noise inherent to the dense nature of the
cloud. It does not assume dominant directions, like in
a Manhattan world hypothesis and does not require
user interactions.

3. Planar models proposition

The 3D planes hypotheses to be considered during
the plane-to-region assignment process (Section 5) are

derived from a dense cloud of 3D points through a 3-
steps procedure.
In the first step, a dense 3D point cloud is generated
by determining, for each pixel x belonging to the first
view I , the corresponding pixel x′ in the second view
I ′, and triangulating [17] these correspondences. A
correspondence x′ is determined for each x ∈ ΩI
(where ΩI is the spatial domain of the image I) based
on a simple “Winner-Takes-All” (WTA) [26] method,
restricted to the epipolar line l′ = F · x̃ associated to x:

x′ = argmin
y′∈F·x̃

∥∥d (x)− d
(
y′)∥∥2

2
, (1)

where F is the fundamental matrix of the calibrated
stereo pair, x̃ are the homogeneous coordinates [17] of
x, d (x) is a descriptor associated to this pixel, and ‖·‖2
is the ℓ2 norm. In our validations, the Daisy descrip-
tors [35] have been chosen for their robustness against
wide-baseline geometric distortions, and their appro-
priateness for dense estimation [34].

In the second step, we derive M planar models
from this noisy 3D point cloud. Therefore, we ran-
domly (uniformly) select M triplets of (non-colinear)
3D points Xt (with t = {1, 2, 3} defining the index of
the 3D point in the Triplet) to generate M plane candi-
dates πm (with 1 ≤ m ≤ M), each one parametrized

as πm = [am bm cm dm]
⊤ to represent the plane

amx + bmy + cmz + dm = 0, or equivalently by

πm = [am/dm bm/dm cm/dm 1]⊤ ,
[
η
⊤
m 1

]⊤
.

In the last step, we derive from the M plane can-
didates, a small number of K ≪ M planes that are
expected to capture most of the representative pla-
nar structures in the scene. Therefore, we first assign
a quality value q (πm) to each of the M plane can-
didates. This is done by considering the triangular
patch [πm] lying on the plane πm and delimited by
the triplet {Xt}t={1,2,3}.

The 2D region representing this triangular patch
[πm] in the first (respectively second) reference view
is denoted ∆m (respectively ∆

′
m), and is defined by:

∆m = {x ∈ ΩI | x ∈ P · [πm]}

∆
′
m =

{
x′ ∈ ΩI ′

∣∣ x′ ∈ P′ · [πm]
}

,

with P ∈ R
3×4 (respectively P′ ∈ R

3×4) the projection
matrix of the first (respectively second) reference view.

We then extract, from the point cloud, the set of 3D
points X projecting in ∆m or in ∆

′
m. For the sake of

simplicity, we slightly abuse the notation in the rest of

the paper and write X ∈ ∆m when the projection P · X̃
of the 3D point X falls into the 2D triangle ∆m. We
write analogously X ∈ ∆

′
m.

Given those definitions, the proposed quality value
q (πm) quantifies how close is the plane candidate πm
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from the 3D points Xj ∈ {∆m ∪ ∆
′
m}, with j ≤ J , J

being the number of 3D points projecting onto ∆m or
∆
′
m. This is done by counting the fraction of 3D points

Xj ∈ {∆m ∪ ∆
′
m} that are closer from the 3D plane πm

than a predefined threshold Td ∈ R
+:

q (πm) =
1

J

J

∑
j=1

(
d(πm, Xj) ≤ Td

)
,

in which

d
(
πm, Xj

)
=

|π⊤
m · X̃j|

‖ηm‖2

is the orthogonal distance between a 3D plane πm

and the 3D point Xj.

The relevance of the quality value q (πm) is as-
sessed, in Section 2 of the supplementary material, by
showing that the distributions of this metric largely
differs for ground-truth and random planes.

Based on this plane quality value q (πm), we select,
from the M plane candidates πm, the K ≪ M most
representative ones by applying a weighted k-means
[8] on the ηm ∈ R

3 vectors. The weight associated
to the plane candidate πm in the weighted k-means is
chosen to be its quality value q (πm).

In summary, although we initially generate a
tremendeous amount of M plane candidates to guar-
antee that this random selection includes the 3D
ground-truth, our plane-to-region assignment method
avoids to compute M · N plane/region association
metrics (N being the number of regions), and reduces
it to K · N, with K ≪ M.

4. Cost of assigning a 3D plane to a 2D re-
gion

This section proposes a novel data-fidelity metric to
quantify how well a given 3D plane π approximates
the 3D surface associated to a region R in image I .
Fundamentally, our data fidelity measures the prox-
imity between the investigated (plane) model π and
the 3D points that project into the 2D region R or its
counterpart Rπ , obtained in I ′ using the homography

Hπ induced by the 3D plane π = [a b c d]⊤ [17],
i.e., Rπ =

{
Hπ · x̃j : xj ∈ R

}
. To modulate our data-

fidelity metric according to the discriminativeness of
the textures observed in the 2D views, we propose to
account for the inaccuracy and the ambiguity of the
2D descriptors associations that support the 3D points
definition.

Indeed, a matching between a pair of 2D points
x ∈ ΩI and x′ ∈ ΩI ′ is expected to be reliable
when the 2D point descriptors d (x) and d (x′) are (1)
very similar, and (2) quite discriminant, which means
they are different from most of the alternative matches

along the epipolar line, i.e., d (x) different from d (y′)
with y′ ∈ F · x̃ (see Equation (1)). For a 3D point X
associated to the triangulation of two matched pixels
x and x′, we introduce:

• the matching inaccuracy, denoted by mi (X), to
measure how dissimilar are the descriptors d (x)
and d (x′) of the two corresponding 2D points
x ↔ x′ associated to X. We define it by:

mi (X) =
1

D

∥∥∥d
(

P · X̃
)
− d

(
P′ · X̃

)∥∥∥
2

,

where D is the size of the descriptor used during
the matching phase.

• the matching ambiguity, denoted by ma (X), to
measure the percentage of pixel candidates y′ ∈
F · x̃ satisfying
1
D ‖d (x)− d (y′)‖2 ≤ m

D · ‖d (x)− d (x′)‖2 + b,
among the pixels y′ lying on the epipolar line
associated to x. In this definition, m and b are
respectively set to 1.5 and 0.002. Our experi-
ments have revealed that these parameters do not
strongly affect the performance of our method.

To evaluate the relevance of those metrics, Figure 1
plots their distributions for two classes of 3D points
that project in a region for which a planar ground-
truth plane π⋆ model (notated GT model) has been
manually defined: (1) the green plot considers the ”in-
liers“ to the manual ground-truth plane π⋆ associated
to the region (i.e., the X satisfying d (π⋆, X) ≤ 0.1 [m]),
while (2) the red plot refers to the outliers (with dis-
tance d (π⋆, X) > 1 [m]) compared to this ground-
truth plane.
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Figure 1: Distribution of the inaccuracy and ambiguity
of the 3D points associated to two ground-truth 3D
planar regions. The floor is textureless, while the roof
is only composed of repetitive textures.
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Figure 1 reveals that, whilst being different, the in-
liers and outliers distributions largely overlap each
others. This prevents the accurate classification of the
3D points into an inlier and outlier class based on
those two metrics.

Since it is not possible to identify the inliers directly
from the 3D points inaccuracy and ambiguity, we have
adopted an indirect statistical approach to estimate
whether a 3D plane correctly fits the 3D point cloud
associated to an image region. In short, we analyze
whether the points that are sufficiently (as defined be-
low) accurate and unambiguous lie close to the plane
model. Formally, let Cτ

R,π denote the set of 3D points
X satisfying the three following criteria:





X ∈ {R ∪Rπ}

mi (X) ≤ τi

ma (X) ≤ τa

where τ = {τi, τa} and τi ∈ R
+ and τa ∈ R

+ are
thresholds on the matching inaccuracy and ambiguity.
As in Section 3, we abuse the notation, and write X ∈
{R ∪Rπ} to indicate that the 3D point X projects onto
the 2D region R, or its counterpart Rπ in I ′.

Given a pair τ = {τi, τa}, we analyze how the
3D points in Cτ

R,π scatter away from the investigated
plane π, by introducing the scattering function
fCτ

R,π
(l, π) to define the fraction of 3D points in Cτ

R,π

whose distance to π is smaller than l ∈ R
+, given a

pair τ = {τi, τa}.

Examples of scattering functions are presented in
Section 4 of the supplementary material. They indi-
cate that the area under curve (AuC) of the scattering
function is a good indicator of plane model relevance.
We introduce A (τ, π) ∈ [0; 1] to denote the area un-
der curve of the scattering function fCτ

R,π
(l, π):

A (τ, π) =
∫ llim

0
fCτ

R,π
(l, π) dl.

Roughly speaking, this area reflects the likelihood that
the 3D points X ∈ Cτ

R,π , spread on the interval [0; llim]
around the investigated plane π, are “close” from this
plane. The choice of {τa, τi} is however impor-
tant. It should keep the subset Cτ

R,π sufficiently large,
while making sure that the most reliable points have
the largest impact. To avoid the tricky/delicate tun-
ing of the parameters {τa, τi}, we consider the scat-
tering function for several subsets of 3D points, each
subset corresponding to an increasing level of accu-
racy/unambiguity. The AuC are then merged based
on a geometric mean, to decide whether a plane model
is valid or not. Formally, the data-fidelity c (R, π) ∈

[0; 1] of assigning a plane π to a region R is thus de-
fined, based on the geometric mean of a sequence of T

tests τ(t) = {τ
(t)
i , τ

(t)
a } on the accuracy/unambiguity

of the 3D points X ∈ {R,Rπ}. In practice, the se-
quence of tests is defined as:

τ
(t) = τ

(1) −
t − 1

T − 1
·
(

τ
(1) − τ

(T)
)

∀t ∈ {1, · · · , T},

with τ(1) (respectively τ(T)) the set of maximum (re-
spectively minimum) investigated thresholds and the
data-fidelity is measured as:

c (R, π)=

{
0 if Rπ ∩ ΩI ′ = ∅

exp
(

1
T ∑

T
t=1 log

(
A
(

τ(t), π

)))
otherwise.

Finally, it is worth noting that we do not con-
sider, in the computation of the data-fidelity, the area

A
(

τ(t), π

)
which are computed on less than a certain

number, set to 10 in practice, of 3D points X ∈ Cτ(t)

R,π .
Computing a geometric mean and ignoring too

small subsets makes the decision relatively indepen-
dent from the actual subsets definition, as long as a
sufficiently fine sequence of {τa, τi} thresholds is con-
sidered. Ignoring small subsets avoids that statisti-
cally non-representative subsets impact the mean. Us-
ing a fine sequence of thresholds ensures that accurate
and unambiguous points largely impact the mean,
since they are part of much more subsets than unre-
liable points.

5. Sparse piecewise-planar approximation

The assignment of a planar model to each of the N
regions is formulated as a multi-model fitting prob-
lem, using the state-of-the-art Propose, Expand and Re-
Learn (PEARL) algorithm [19]. As its name indicates,
the PEARL inference optimization is composed of
three steps: the proposition of a set of models (“pro-
pose stage”), the label inference (“expand stage”) and
the models reestimation (“re-learn stage”). We now
explain how the PEARL framework is adapted to fit
our problem.

In the “propose” stage, while the original paper re-
quires to generate several thousands of models candi-
dates, we rely on Section 3 to limit ourselves to a few
hundreds (only 200 candidates are used in our valida-
tions). This enables us to strongly accelerate the opti-
mization, while keeping the same accuracy (as shown
in Section 5 of the supplementary material).

In the “expand” stage, one planar model is as-
signed to each image region. The inference problem
is expressed as an energy-driven minimization [19]
(solved by α-expansion [5]). In our case, it minimizes:
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E(L)=
N

∑
n=1

(1−c (Rn, π(Ln)))+λ∑
(p,q)∈N

ωpq δ
(
Lp 6= Lq

)
+β|LL|

where L = {L1, L2, · · · , LN} are the labels assigned
to the N regions. Each label Ln refers either to
one of the K models, or to an occlusion label L∅,
which allows to explicitly model the occluded regions.
c(Rn, π (Ln)) ∈ [0; 1] is the cost of assigning the
π(Ln) model to the nth region (see Section 4), δ (.)
is the indicator function, |LL| is the number of as-
signed models4 and ωpq is a weight associated to a
pair of neighboring regions that encourages spatial co-
herence, defined as:

ωpq =





1 − E [|∇I (x) |]x∈B if Rp and Rq have a

common border B

0 otherwise

where the gradient amplitude |∇I (x) | is rescaled to
[0; 1], by applying contrast stretching over the entire
gradient image, and E [.] represents the mean opera-
tor.

Eventually, in the “re-learn” stage, PEARL extracts,
for each assigned label Ln 6= L∅, the set PLn of region
assigned to this label, and reestimates the associated
model. This reestimation is done by selecting the set
of 3D points that project into one of the regions of PLn

and applying RANSAC [10] (with inlier threshold τ)
to robustly fit a new plane model to these 3D points,
based on the inlier score proposed in [4].

The PEARL algorithm iterates sequentially be-
tween the three stages, until E(L) reaches a minimum.
In contrast to [19], our implementation also iterates
over the regions that are initially assigned to the L∅

label.

6. Experiments

This section considers various man-made scenes,
and demonstrates that our method is able to locate
their main 3D planes, as well as to detect their oc-
cluded regions. The accuracy of the 3D model is then
validated by generating free-viewpoints around the
piecewise-planar reconstructed scenes. To comple-
ment those results, Section 5 of the supplementary
material presents additional results showing that our
plane proposition phase is effective at generating a
small set of 3D plane hypotheses that includes the 3D
ground-truth of the scene.

4This term encourages parsimony, to describe the scene with as
few plane models as possible.

We consider 10 well-known and calibrated se-
quences representing street-level captures of (man-
made) building scenes (indoor and outdoor). While
these datasets provide multiple different views of
each scene, we have arbitrarily selected two distant
views among the available ones to define a set of
wide-baseline stereo pairs.

To segment the left view, we rely on [40] [39] to
learn the dominant colors in the image5. Given this
set of C dominant colors, the segmentation problem is
defined as the assignment of each pixel to one of the
C classes. To impose the smoothness among neigh-
boring pixels, this assignment problem is solved by
graph-cut optimization [9], in which the data-fidelity
term is defined as the ℓ2 distance between the C dom-
inant colors and the pixel color, and the smoothness
term is proportional to the inverse of the amplitude of
the gradient of two neighboring pixels. This method
results into a set of N regions.

Our method depends only on two types of param-
eters. First, the RANSAC inliers/outliers parameter τ
and the parameter llim (representing the investigated
orthogonal distance around the proposed 3D plane)
are fixed, based on rough prior human knowledge
about the depth variability in the scene. In all our
experiments, llim has been chosen between 30cm and
1.5m, while τ has been fixed to τ = llim/5. Second, for
the parameters of the PEARL optimization, we have
set the pairwise term to λ = 0.1 and the occlusion
data-fidelity to c(Rn, π (L∅)) = 0.5 in all our experi-
ments. This last parameter is a good trade-off between
accepting plane assumptions on regions associated
to noisy 3D points and discarding bad planes. The
labeling weight β is chosen between [0.1; 0.5] to lead
to a visual reasonable trade-off between number of
planes and accuracy of representation.

Figure 2 illustrates the results of the different steps
of our algorithm, as well as the projection of the first
view onto the second one via the piecewise-planar
approximated model. Occlusions are highlighted
in black. From top to down, the used datasets are:
CastleP19/FountainP11 [33] and Model-house/
Wadham/MertonIII [41]. Similar validations on
other well-known wide-baseline datasets, such as
HerzJesuP25/Oxford Corridor/Library/MertonI
and MertonII, are presented in the supplementary
material (Section 6).

5The required color dissimilarity threshold for learning the dom-
inant colors consituting the image has been set to 20 in all the exper-
iments. This parameter influences the number of obtained regions.
Our experiments have revealed that it does not strongly affect the
performance of our piecewise-planar 3D approximation, as long as
the image is over-segmented.
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First, we note that most of the 3D planes are cor-
rectly estimated (columns (d) and (e) in Figure 2) , de-
spite the presence of noise in the dense 3D point cloud.
This performance is due to the high robustness of the
proposed data-fidelity metric c (R, π), which simulta-
neously considers the 3D points of R and Rπ .

Second, the failure cases of our approach are
not frequent, and can be divided into three classes:
wrong 3D plane model assignment, assignment of
visible regions to the occlusion label, and wrong 3D
plane estimation. The first class of errors appears
either when the 3D points projecting in R and Rπ

are strongly contaminated by 3D outliers, and the
high value of β pushes towards the propagation of
a wrong model from an adjacent region (e.g., in the
sky regions in the 4th row of Figure 2), or when the
initial image segmentation defines regions that cover
two distinct planar models (e.g., on the gutter at the
middle of the left wall of Merton II, presented in the
5th row of Figure 7 in the supplementary material).
The second class of errors (assignment of a visible
region to the occlusion label) appears in the absence
of 3D points in the interval [0; llim] around the 3D
ground-truth. This behavior can be observed on the
tower of the Library dataset (4th row of Figure 2,
column (d)). The third class of errors (wrong model
estimation) can affect either the large and challenging
2D regions, or the smallest ones. In the first case, the
inaccuracy of the plane estimation originates from
the planar re-estimation of PEARL, using RANSAC
on a region that is contaminated by more than 50%
of 3D “outliers“. This behavior can be observed on
the Oxford corridor image (supplementary material,
fourth row, third column), or on the terrace of the
Model-house sequence (supplementary material,
Figure 7, second row, third column). The second case
appears in very small regions for which the spatial
concentration of their associated 3D points makes the
(RANSAC-based) fitted plane more prone to errors
than if the 3D points were spatially spread (large
region). This problem affects the roof of the windows
of the Merton I dataset, as attested by the fact that
those regions are projected on the grass in the other
view, as illustrated in the fourth row in Figure 7 of the
supplementary material, column (e).

To complete our visual experimental results, Figure
3 (as well as Figure 8 and many videos, in the sup-
plementary material) demonstrates the effectiveness
of our dense, piecewise-planar 3D approximation
method, by projecting the textured 3D piecewise-
planar models on virtual intermediate views.

Regarding complexity, our method reconstructs
each 3D scenes in a few minutes (from 4 to approxi-
matively 20 minutes, according to the resolution of the
reference images, Matlab implementation on a 2.4GHz
Intel I5 CPU, 8Gb RAM machine), which are divided
into three parts: approximatively 60% of the running
time is dedicated to the dense point cloud generation
(using currently a non-parallel implementation of the
WTA method), 25% on the plane proposition phase (in
which the location of the pixels in ∆ and ∆

′ takes the
most of the running time), and 15% for the rest.

7. Conclusion

We express the 3D reconstruction as a generalized
plane assignment problem over 2D image regions, in
which the occluded regions are explicitly modeled.
We rely on a dense, and thus inherently highly cor-
rupted, 3D point cloud to allow the approximation of
challenging (e.g., textureless or repetitively patterned)
2D regions, e.g., grass floors. Therefore, we adopt
a multi-model fitting framework. It relies on a lim-
ited number (e.g., ≈ 200) of candidate plane mod-
els, and formulates the plane assignment problem as
an energy-driven formulation, which simultaneously
optimizes a data-fidelity term, the smoothness of the
plane assignment over the regions and the number
of used models. Our main contributions have to do
with the computation of a small set of relevant candi-
date models, and the derivation of a data-fidelity met-
ric that measures the fitting error while considering
the inaccuracy and the ambiguity associated to the 2D
matches used to defined the 3D points . Also, to the
best of our knowledge, by simultaneously optimizing
the data-fidelity, the smoothness and the number of
assigned models, our light-weight method is the first
one to densely approximate a 3D scene while simul-
taneously targeting a minimal number of models. We
have demonstrated the accuracy of the approximated
3D models by interpolating virtual views around a va-
riety of man-made scene, on which traditional MVS
methods fail [4].
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(a) (b) (c) (d) (e)

Figure 2: (Best viewed in color). Based on the segmentation (a) of one of the two wide-baseline views ((a) and
(b)) and on their associated dense point cloud (c), our method approximates the 3D surface by the minimum set
of of 3D planes. In (d), regions assigned to the same 3D plane are illustrated with a same color. The reprojection
of the optimal piecewise-planar reconstruction, textured based on the first view (a) and projected in the second
view (b), is represented in (e).

Figure 3: Projection of the textured piecewise-planar approximation of the scene’s 3D on virtual views in-between
the two cameras of the wide-baseline stereo pair.
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