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Abstract

This paper presents a stereo matching approach for
a novel multi-perspective panoramic stereo vision system,
making use of asynchronous and non-simultaneous stereo
imaging towards real-time 3D 360◦ vision. The method is
designed for events representing the scenes visual contrast
as a sparse visual code allowing the stereo reconstruction of
high resolution panoramic views. We propose a novel cost
measure for the stereo matching, which makes use of a sim-
ilarity measure based on event distributions. Thus, the ro-
bustness to variations in event occurrences was increased.
An evaluation of the proposed stereo method is presented
using distance estimation of panoramic stereo views and
ground truth data. Furthermore, our approach is compared
to standard stereo methods applied on event-data. Results
show that we obtain 3D reconstructions of 1024 × 3600
round views and outperform depth reconstruction accuracy
of state-of-the-art methods on event data.

1. Introduction

The role of sparse information has been shown to be an
effective technique for solving tasks or boosting the per-
formance of many computer vision applications. Typical
examples are highly condensed and possibly enriched de-
scriptions of distinctive scene points used for e.g. solving
visual correspondences, object matching and image analy-
sis [1, 20, 32]. Stereo matching, which is recognized to be
a computationally expensive task, can be efficiently com-
puted using such sparse feature descriptors [28].

Another approach, providing a sparse representation of
scene content, is given by the biologically inspired dynamic
vision sensors (DVS) [16] that convey visual information
by generating and passing events yielding a sparse visual
code [3], which we call event-driven vision. These sen-
sors allow high energy efficiency, high temporal resolution

and compressed sensing [3] to efficiently solve computer
vision tasks: e.g. real-time gesture control interface [14],
event-driven formulation of epipolar constraint [4], stereo
matching and 3D reconstruction [25, 6] and high-speed ob-
ject classification [2].

By implementing the concept of sparse information at
the pixel level, these sensors only detect scene content that
has undergone a relative contrast change. Similar to bio-
logical neural systems, they feature massively parallel pre-
processing of the visual information making use of an ana-
log circuit at each pixel, combined with asynchronous event
information encoding and communication. A scene con-
tent is thereby not presented as an image frame; instead
the therein-detected relative intensity changes are coded and
transferred as a variable stream of asynchronous events,
efficiently capturing scene dynamics (frameless) at a high
temporal resolution and high dynamic range. The advan-
tages of event-driven vision include: Firstly, that static
background containing redundant information does not lead
to the generation of events, resulting in a massive reduc-
tion of data volume, which in turn helps to save processing
time and computational resources. Secondly, relative con-
trast changes are mainly caused by moving objects, which
eliminates the need for a time-consuming segmentation of
moving (foreground) and static background objects as a pre-
processing step, e.g. tracking of people [22].

Panoramic vision in 3D [13] has the advantage of pro-
viding a full 360◦ view; hence features and objects can be
observed continuously supporting navigation [29] and lo-
calization tasks [11], e.g. a driverless google car. Laser-
based systems [31] are capable of providing 360◦ panora-
mas in 3D. Although this technology guarantees high accu-
racy, it has a low vertical resolution at high cost (∼80k$).
On the other hand, there have been a number of attempts
to obtain panoramic views based on stereo vision in lit-
erature [10, 21, 30]. However, achieving the performance
required for applications targeted on embedded systems in
terms of real-time capability with limited computing re-



sources is still a challenge. Based on event-driven vision,
a multi-perspective (rotating) stereo system consisting of a
pair of line DVS, each having a resolution of 1024 × 1 pix-
els, was recently proposed [3]. This system is capable of
providing high resolution stereo panoramic views of up to
10 pan/s. Although standard stereo methods can be applied
to event views, they do not cope well with event-driven vi-
sion, since these methods were conceived for conventional
images relying on prerequisites (e.g. dense images) that do
not hold for event-driven vision. We therefore believe that
tailored event-driven methods have to be developed in order
to efficiently exploit the advantages of event-driven vision.

In this paper, we present an efficient stereo matching
method for event-driven vision, introducing a novel cost
measure for asynchronous events generated by a multi-
perspective DVS system (Section 3). Our algorithm is
able to exploit the temporal information of events generated
from scene contrast as a matching criteria having the advan-
tage that no direct images are required; Section 4. In order
to evaluate our method, we present an experimental com-
parison with conventional state-of-the-art stereo methods on
events and ground truth data for several scenes, demonstrat-
ing the advantages of event-driven vision in Section 5. Sec-
tion 6 concludes the paper and highlights the main findings.

2. Related work on Event-Driven Stereo Vision
Since the early work on event-driven vision in [17], sev-

eral prototypes of dynamic vision sensors [16, 5, 3] were
developed in the last decade and numerous stereo matching
approaches based on events were published.

Mahowald et al. [18] presented in 1989 a stereo match-
ing method using static and dynamic image features. An
area-based approach using an adapted cost measure for
event data was presented by Schraml et al. [27] and demon-
strated in a real-time tracking application. Later Kogler et
al. [12] provided a comparison between area-based and fea-
ture based methods and Eibensteiner et al. [6] implemented
in hardware a high performance event-driven matching ap-
proach, which is based on time-correlation. In the work
from Rogister et al. [25] (two static DVS, simultaneous
stereo vision) stereo matching is based on the idea that cor-
related events are likely to appear within a small time inter-
val and on the same epipolar line. Small variations in timing
are tolerated. The work of Piatkowska et al. [23] combines
this approach with a dynamic network such that the history
of events contributes to the stereo matching. Aside from
this, in Lee et al. [14] a stereo system was used for gesture
control. Although disparity was not explicitly calculated,
the left and right data stream was combined so that fore- and
background motion could be distinguished. These methods
use data from two static DVS based on simultaneous stereo
vision.

In order to get a better understanding of event-driven

stereo matching we propose a subdivision of stereo meth-
ods into three groups based on how the correspondence is
calculated: a) Classical stereo methods: Stereo matching
is performed using a conventional stereo method based on
area sensors. The events are transformed into an image-
like representation, for example by integration of events.
b) Event-driven methods from simultaneous DVS. Using
the sensors’ high temporal resolution, temporal coherence
is used to find matching events between left and right sen-
sor data. c) Event-driven matching from non-simultaneous
DVS (our method). The disparity is given by the time dif-
ference between corresponding event pairs.

The majority of these methods is associated with groups
a) or b), both using area DVS that simultaneously records
the scene. These methods rely on event occurrence at a
close timely distance between left and right sensor. How-
ever, data from group c) cannot be handled by these
methods since left and right views are non-simultaneously
recorded.

In more detail: In an event-driven vision system multi-
ple events generated from one pixel extend in time. For the
simultaneous recording of the left and right views, the data
collection of an event-driven system based on area sensors,
therefore always spans a 3D space (x-y-t). The pixel activa-
tions in the left and right view deviate in the spatial domain
and are inferior in time domain. Either a spatial activation
pattern (in x-y space with flattened time domain) or the tem-
poral coherence based on statistics may be used for defining
a correlation metric. However, in non-simultaneous stereo
vision like in the case of concentric panoramas [15] data
collection spans a two dimensional (x-t) space, where 2D
spatial information is not explicitly available. Here, pixel
activations in the left and right view always deviate in the
time domain, i.e. corresponding events appear at a different
time. The realization of an event-matching algorithm for
handling non-simultaneous vision is an open issue.

We solve the problem of finding corresponding events
in the time domain by defining a novel cost measure that
is based on event distributions using inter-event distances,
which is tolerant to variations in time as well as in the num-
ber of total events.

3. Panoramic Stereo Vision Based on Biologi-
cally Inspired Dynamic Vision Sensors

This section briefly describes the event representation
and the key characteristics of the multi-perspective stereo
system using DVS. The system consists of a rotating pair
of dynamic vision line sensors V1 and V2 arranged symmet-
rically at an equal distance R to the rotational center C0,
generating symmetric pairs of concentric panoramas (Fig-
ure 1). A multi-perspective panoramic view is acquired by
collecting the stream of asynchronous events during the sys-
tem revolution, yielding a sparse visual code. Due to the
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Figure 1. 360◦ Panoramic stereo vision setup.

Figure 2. Events from a panoramic view showing the events polar-
ity; ON-events (red) and OFF-events (blue).

symmetric setup, the ratio of the vertical scaling factor be-
tween the left and right view s2:1 = 1 [15]. Unlike stereo
matching on standard images, where the disparity quantifies
the parallax effect of a stereoscopic view by means of Eu-
clidean distance, this system measures disparity as a time
difference dt between observation of a scene point by the
first and second sensor. The depth Z can be formulated
for sensors that have their optical axis perpendicular to the
swing line C0V12 as:

Z =
R

sin( δ2 )
(1)

where R is the radius. By using the system’s revolution
rps (assumed constant), the measured disparity given as an
angle is easily calculated as δ = 360◦ ∗ rps ∗ dt. The
asynchronous events contain three elements: (1) the address
(position) y of the triggered pixel, (2) the time of occur-
rence t and (3) the polarity p of the relative contrast change,
coded as (-1, +1) reflecting a negative (OFF-event) or pos-
itive (ON-event) relative contrast change respectively. We
use the notation ej(y, p, t) for a single event, where the su-
perscript j indexes the sensor that generated this event. The
example in Figure 2 shows the event polarity information.

4. Stereo Matching

In this section we describe the individual processing
steps for event-driven stereo matching for asynchronous vi-
sion. Stereo matching refers generally to the search for cor-
responding primitive descriptions in views from different
perspectives [19] in order to reconstruct 3D information by
triangulation. In event-driven vision, it has to be considered
that single events do not carry enough information to be
matched thoroughly. Although events can be transformed
into a map representation, the common solution of reducing
matching ambiguity by defining areas as matching primi-
tives does not give satisfactory results for two reasons: i)
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Figure 3. Event-driven stereo algorithm workflow.

Event data is sparsely distributed, so that there exist posi-
tions in the transformed event map where no data is avail-
able and hence cannot be matched. ii) Events do not appear
at the same time, meaning that sequences of events from the
left and right view are not identical. The direct matching of
events would therefore be inappropriate.

The stereo matching in our approach (two line DVS,
non-simultaneous stereo vision) is based on the idea that
correlated sequences of events are likely to have a simi-
lar event-count and inter-event timing. Variations in the
timing and the number of generated events can be quan-
tified by the proposed cost measure. For the purpose of
finding corresponding event positions, a novel event-driven
stereo matching algorithm was developed. This algorithm
can handle the absence of information and cope with inter-
event sequence variations by defining a matching method
based on the distribution of events rather than on pixel wise
correspondence. The proposed stereo algorithm is outlined
in Figure 3 and consists of three steps.

4.1. Data Interface & Pre-processing

The purpose of this module is to acquire event data from
both sensors and to prepare data for the event-driven stereo
matching step. Event-data is thereby transformed so that
spatial context is restored.

4.1.1 Event Map Generation

Stereo reconstruction requires multiple views of the same
scene to build a depth map. Typically, spatial context is used
in stereo matching. As spatial context is not evident in event
streams, it has to be restored. The first step is to transform



Figure 4. Event map from outdoor scene (without coding the po-
larity).

the timestamps t of events into image coordinates x using:

x(t) = cx ∗ ((t ∗ rps)mod 1) (2)

Variable cx determines the image horizontal resolution,
which can be interpreted as a horizontal scaling factor. If
resolution cx is set to the reciprocal of sensors’s timestamp
resolution then the event map is built without time quan-
tization and thus without loss in horizontal resolution. In
our example the sensor system timestamp period was set
to 40 µs, which is equivalent to 25000 columns. The term
((t ∗ rps)mod 1) corresponds to the angle, represented as a
fraction of one revolution. The second step is to render the
panoramic event map E(x, y) by accumulating the event
polarities:

Ej(x, y) =
∑

eji∈M(t1,t2),yi=y

(pi |xi(ti) = x) (3)

where yi and pi are the spatial location and polarity of the
event ei and (x, y) are the image coordinates. Such a recon-
structed event map can be viewed as a panoramic image,
showing contrast change at high-resolution, (Figure 4).

4.2. Event-Driven Stereo Matching

4.2.1 Event Distribution Measure

An ordered list of events generated from a sensor’s pixel
form an event sequence. Two correlated sequences of events
taken from the same scene at two different times or recorded
from two different sensors show similar distribution, how-
ever they do not exactly match for several reasons. These
are caused by internal factors e.g. timing jitter resulting
from fabrication tolerances of sensor circuits and external
factors, like reflectance variances or changes of perspec-
tive. Considering this, a novel cost measure is developed
that is based on measuring the relative timing differences
of two event sequences (one-dimensional patches) from the
left and right sensor lines: the positions of events (time of
occurrence) in the first sequence are compared with those
of the second by means of minimal distances between event
positions. The cost is equivalent to the sum of all these dis-
tances. The principle and examples for a low cost and a
high cost measure are illustrated in Figure 5.

In a first step, we define a measure that efficiently de-
scribes the local distribution of event positions within a sin-
gle event-sequence, the Non-Zero-Distance (NZD) func-
tion. Such event-sequences are found in the transformed
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Figure 5. Similarity measure. Partial cost calculation based on
minimal distances between event positions from the left to right
(blue) and the right to left (green) event maps. Event positions are
indicated by vertical bars. Illustration of cost calculation (a). Ex-
ample from a low cost case (b) and a high cost case from different
event-sequences.

event-map as segments of horizontal lines. The NZD as-
signs to each point in the event map E(x, y) the minimum
distance to any other event of the same image row (i.e. gen-
erated by the same sensor pixel), which can be formulated
by:

NZDj(x, y) = min
i
(abs(x− i) |Ej(i, y) 6= 0) (4)

where j indices the sensor.

4.2.2 Cost Calculation

The cost measure is calculated as follows: The partial cost
using segments of EL and NZDR, where L,R denote the
left and right sensor, calculates to:

CL,R(x, y, d) =
∑
w∈W

EL(x+w, y)∗NZDR(x+w+d, y)

(5)
where W is the patch window size. In order to maintain
symmetry, partial cost is also similarly calculated with ex-
changed E and NZD:

ĈL,R(x, y, d) =
∑
w∈W

NZDL(x+w, y)∗ER(x+w+d, y)

(6)
It should be mentioned that the two partial costs have the
same sensor, indexed by L, as reference and are thus dif-
ferent to cross-check, which is characterized by exchanging



the role of the reference and the dependent sensor. This
technique is applied during disparity estimation. Finally,
the total cost of a match is modeled as the sum of partial
costs:

C =

{
CL,R + ĈL,R, if (nL ≥ τ) ∧ (nR ≥ τ)
Cmax, else

(7)

with n =
∑
w∈W

E(x, y) the number of events in a segment

and τ the minimum event count. If a segment do not con-
tain enough events, partial cost calculation is omitted and
set to a maximum value. For evaluation, the following
settings were used throughout all experiments in this pa-
per: minimum number of τ = 3 events and maximum cost
Cmax =W , which empirically performed well.

4.2.3 Disparity estimation

In the previous step a cost matrix, the disparity space im-
age (DSI) which is sparsely filled, was built. In order
to find the optimal method several disparity computation
strategies were evaluated: a winner-takes-all (WTA) strat-
egy, the semi-global matching method [8] and a dynamic-
programming (DP) approach. This DP approach delivered
experimentally the best results, and was therefore used in
the algorithm. Disparity thereby results from computing the
minimal cost path through the cost map of all pairwise costs
between two corresponding event map lines [26].

4.3. Refinement

The refinement step is used to filter small outliers and
streak effects, which may remain from a 1D search in the
disparity map. First, the disparity map of the right event
map is obtained and a cross-check is applied to detect un-
reliable matches. A match is thereby accepted if both dis-
parities coincide; otherwise, it is discarded. Consecutively,
the disparity map is refined by replacing disparities that are
very different to its surroundings with a locally mean value,
following the approach from [8]. This method allows most
of the outliers to be eliminated. Finally, the disparity of
event positions that could not be matched, is estimated as a
locally smooth interpolation to valid neighbors.

4.4. Standard Stereo Matching

We compare our method in Subsection 5.2 with state-of-
the-art stereo methods. The stereo matching of event-data
is performed on transformed event-maps. As these methods
provide dense disparity maps, we mask the disparity map
with the event map to get a sparse map similar to the event-
driven stereo results.

5. Evaluation
This section provides an evaluation of the proposed

event-driven stereo matching using distance measures from
panoramic views and the results from state-of-the-art stereo
methods applied to transformed event-data.

All event-data were recorded by the multi-perspective
DVS system with identical settings. The optical focal length
used was f = 4.5 mm, resulting in a vertical field of view
of 45◦. In this setup the sensor resolution is 1024×1 pix-
els, while the reconstructed event-map resolution is of vari-
able size 1024×cx. The photosensitive size is 12 µm in a
horizontal direction, which is projected through optics to
approximately 0.152◦. A panorama may therefore be rep-
resented by 360

0.152 = 2368 pixels so that projected field
of view of the pixels does not overlap but covers the en-
tire panorama. This can be seen as the native image res-
olution. However, since the sensor’s timing resolution is
much higher and multiple events may occur from the de-
tection of strong contrast changes, we also investigated the
matching performance of higher resolution depth maps up
to 1024×3600 pixels. Since the image resolution of trans-
formed event maps also affects the sparseness of data rep-
resented therein, we used smaller image resolutions as well
in order to evaluate the performance of the stereo methods
with regard to data sparseness. If an event stream is mapped
to a higher image resolution, clearly the events become less
cluttered, i.e. the events are more distributed and a larger
quantity of image area remains empty. For our evaluation
we therefore use image resolutions of 256×700, 256×1400,
512×1400, 1024×2800 and 1024×3600 pixels. The event
maps are built according to Equation 3.

5.1. Panoramic Depth Estimation

In our first evaluation we compared panoramic depth
map reconstruction converted to a Cartesian coordinate sys-
tem with ground truth data. Several recordings were per-
formed with objects of various shapes and sizes placed at
different distances. A camera image of one test set is shown
in Figure 6. This image is shown for illustration purposes
only and therefore does not claim an exact alignment to
the recorded event data. The true distances to each object
were measured manually by a laser distance meter. We per-
formed stereo matching using the proposed method of these
test sets followed by a transformation of resulting event dis-
parities in metric distances (Equation 1). For a good align-
ment of distance measures we shifted disparities by -0.65
degrees, which allows an inclination of the two sensors to
be corrected. Results are presented in Figure 7 with color
coded distances. Objects can be recognized by their shape
and the unique distance coding of their boundaries. The
books in the middle image (B) also show well-matched
inter-object structures.

In Figure 8 the same data is represented as a 2D map



Figure 6. Camera image of test recording (Figure 7)(B) taken with
a mobile device.
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Figure 7. Experimental results of test recordings showing the dis-
tance color coded.

by registering the events using their horizontal position and
distance estimation from a top down view in a Cartesian co-
ordinate system. Note that data from all sensor pixels are
used. To eliminate the stairs effect from discrete disparity
values, the calculated distances of each event are scattered
within one pixel disparity tolerance. The concentric cir-
cles indicate the depth resolution of single disparity steps.
Ground truth measurements are plotted as red crosses. We
can see that most of the edges are within a range of one or
two disparities, indicating the total variation of measured
event distances of these objects edges. It can be noticed that
the distance estimation thereby matches the ground truth.
Thanks to the high vertical and dense resolution, an object
is detected by a significant number (in our examples de-
pending on size and distance 200-500) of pixels.

5.2. Standard Stereo Matching using Transformed
Event-Data

We compared our event-driven stereo matching (EDS)
algorithm with two state-of-the-art local stereo methods
based on transformed event-data: The ”Fast Cost-Volume
Filtering” (FCVF) [9] method makes use of a filtering tech-
nique based on an edge preserving filter, which seems ad-
equate for handling event data. This method is a top per-
former in the Middlebury database [26]. The ”Libelas”
method [7] estimates disparity by forming triangulation on
sparsely supported points and uses this to efficiently exploit
the disparity search space. An implementation for both is
publicly shared.

For this test we used recordings from a structured light

Figure 8. Experimental results of event-driven stereo transformed
to Cartesian map compared with ground truth.

system as ground truth data, which is masked with the ref-
erence (=left) event map. As an error measuring metric we
use the error rate, defined as the fraction of incorrect dispar-
ities according to a threshold, which were set to t = 1.0 and
t = 2.0. Sparse event information means that a typically
large fraction of the disparity map remains empty, and as
such should be excluded from evaluation. Therefore, pixels
containing no event information are not considered when
calculating the error rate. The comparison for two exam-
ples is presented in Figure 9.

Note that those large unstructured areas in the back-
ground, which are for image-based methods typically dif-
ficult to match and therefore more likely to contain mis-
matches, are not considered in event-driven stereo since
these areas do not generate events. Results are listed in Ta-
ble 1. The pixel column indicates the sparseness as the frac-
tion of pixels in the event map containing an event. While
FCVF and Libelas show a tendency toward higher error
rates with increasing image resolution, i.e. sparseness, our
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Figure 9. Results on a subset of the test recordings with ground truth. Note that the camera capture was taken from a different (elevated)
position. Ground truth comprises only events from foreground objects. The background as well as the floor is not considered in evaluation.
Errors (t = 2.0) are plotted in red.

Figure 10. Average match performance vs. image resolution. With
higher image resolution data becomes sparser. Our EDS method
achieves a high matching performance for all image resolutions
and outperforms standard stereo methods, particularly for high im-
age resolutions.

method delivers good results among all image resolutions
and the highest accuracy in all test cases for (native) image
resolution of 1024×2800 and above. The average matching
performance (error<1.0) stresses this context, as in Figure
10 presented. It is interesting that although our method was
designed for sparse data, it still performs competitively and
in three of six cases performs best for the lowest evaluated
image resolution, where pixel density is above 50%.

5.3. Real-World Scenario

This section demonstrates the success of the proposed
method on a challenging real-world scenario. Using the
same system, a scene was recorded outdoor at 10 rps under
bright sunlight conditions including highly textured areas
like gravel path, grass, bushes and trees. The corresponding
left event-map is shown in Figure 4. The result is presented
in Figure 11 with color-coded distances, showing that the

Figure 11. Experimental result of a real-world scenario. Trans-
formed event-map (top) and stereo result (bottom).

people and the building in the rear as well as the car and
the highly textured bushes are matched well, while the very
slanted gravel path is problematic.

5.4. Discussion

The performance of proposed event-driven stereo match-
ing has been demonstrated on three examples including ac-
curacy measurement, comparison to standard stereo meth-
ods and real-world results. Our approach aims at real-time
3D reconstruction, which is therefore based on local op-
erations without the need for global optimization; alhough
global optimization methods - like [24] - can also generate
decent results. However, global methods are contradictory
to the concept of sparse and non-simultaneous event-driven
vision. We therefore found it misleading to have a mix in the
concept of how stereo matching is performed and restricted
the evaluation to FCVF [9] and Libelas [7], which are both
fast local methods. In our approach, the event-driven stereo
matching may be processed for each line in the disparity
map in parallel.

We have implemented the algorithm in C# for real-time
performance, which is achieved for half native resolution,
i.e. 1024×1400, by now using an un-optimized code. The
cost calculation requiring ∼2/3 of total computation time
is well-suited for optimization. Moreover, the computation
cost is linear in scale with image resolution.

The robustness and limitations of the proposed method



Image size pixel FCVF Libelas EDS FCVF Libelas EDS
t=1.0 t=1.0 t=1.0 t=2.0 t=2.0 t=2.0

im1 256*700 0.57 1.5 45.4 31.0 0.7 43.3 10.6
im1 256*1400 0.42 13.3 30.6 11.6 9.9 28.0 2.9
im1 512*1400 0.31 8.1 44.5 6.6 4.9 42.7 0.8
im1 1024*2800 0.12 34.6 84.6 10.6 27.8 78.6 3.0
im1 1024*3600 0.09 49.6 72.4 22.0 34.9 63.3 3.4
im2 256*700 0.58 8.5 21.4 24.8 3.5 18.8 0.3
im2 256*1400 0.44 58.2 14.2 48.8 48.2 5.8 5.7
im2 512*1400 0.31 52.3 22.5 28.6 44.4 19.3 2.9
im2 1024*2800 0.12 35.8 41.2 7.0 35.8 24.1 3.5
im2 1024*3600 0.10 50.4 44.7 3.5 41.1 28.8 1.0
im3 256*700 0.56 30.3 20.8 16.2 10.4 16.4 1.7
im3 256*1400 0.41 42.6 47.3 20.8 31.1 40.1 5.0
im3 512*1400 0.30 43.7 39.5 17.7 25.0 34.3 2.8
im3 1024*2800 0.11 74.6 64.7 31.8 57.5 51.4 10.2
im3 1024*3600 0.09 69.6 86.4 33.7 45.1 78.9 13.2

Table 1. Errors for each of the evaluated methods. Our EDS method yields the highest accuracy for most of the test cases. In particular, for
stereo reconstructions of higher image resolutions - more sparseness - and reconstructions of native image resolution, our method performs
best for both error thresholds.

rely on the capability and sensitivity of both sensor lines to
capture edges in natural scenes. This is compromised by
heavy noise or low event generation due to weak contrast
changes. While noise can stem from increased sensor sen-
sitivity, both noise and low event generation can occur in
low lighting situations, when the limits of the high dynamic
range of the sensor are reached. Since an edge is typically
represented by several events, a few noisy events are tol-
erated very well. However, the NZD function gets flawed
with an increasing number of noise events. The challenge
of the method is to adapt the choice of the sequence size
to be large enough to cover all events from an edge but as
small as is possible to reduce the number of (random) noise
events within a sequence. A weak contrast results in large
timing variations, i.e. generates widely scattered events that
cannot be matched. The disparity of these events are esti-
mated in the refinement step.

6. Conclusion

We have presented a novel stereo matching method for
non-simultaneous event-driven vision. It exploits the sparse
event information as a result of scene contrast as a match-
ing criteria for efficient 3D reconstruction in real-time out of
360◦ panoramic views. We have compared our method with
ground truth and with two state-of-the-art stereo match-
ing methods, which were designed for standard camera im-
ages. Results showed that the stereo reconstruction of scene
contrasts detected at various distances agree with ground
truth data in Cartesian map representation. The experi-
ments revealed that thanks to the novel cost measure our

tailored event-driven stereo method accurately reconstructs
3D information of event-data over a wide range of sparse-
ness. It outperforms standard state-of-the-art stereo meth-
ods on sparse event-data, particularly for high resolution
panoramic images. Results on the natural scene show the
usability of the method and the capability of the method for
application in a natural environment. In future we plan to
investigate the properties of this matching method on more
recordings of natural environments with varying environ-
mental conditions.

Acknowledgement
This work is supported by the project BiCa360◦ (grant

number 835925) from the Austrian Research Promotion
Agency.

References
[1] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina

keypoint. IEEE Conference on Computer Vision and Pattern
Recognition, pages 510–517, 2012.

[2] A. Belbachir, M. Hofstätter, M. Litzenberger, and P. Schön.
High-speed embedded-object analysis using a dual-line
timed-address-event temporal-contrast vision sensor. IEEE
Trans. on Industrial Electronics, 58(3):770–783, Mar. 2011.

[3] A. Belbachir, S. Schraml, M. Mayerhofer, and M. Hofstätter.
A novel hdr depth camera for real-time 3d 360-degree
panoramic vision. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 419–
426, June 2014.

[4] R. Benosman, I. Sio-Hoi, P. Rogister, and C. Posch.
Asynchronous event-based hebbian epipolar geometry.



IEEE Transactions on Networks and Learning Systems,
22(11):1723–1734, 2011.

[5] T. Delbrück, B. Linares-Barranco, E. Culurciello, and
C. Posch. Activity-driven, event-based vision sensors. IEEE
International Symposium on Circuits and Systems ISCAS,
pages 2426–2429, May 2010.

[6] F. Eibensteiner, J. Kogler, and J. Scharinger. A high-
performance hardware architecture for a frameless stereo vi-
sion algorithm implemented on a fpga platform. IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
637–644, 2014.

[7] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale
stereo matching. In Asian Conference on Computer Vision
(ACCV), 2010.

[8] H. Hirschmüller. Stereo processing by semiglobal matching
and mutual information. IEEE TPAMI, 30(2):328341, 2008.

[9] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 35(2):504 – 511, 2013.

[10] W. Jiang, M. Okutomi, and S. Sugimoto. Panoramic 3d
reconstruction using rotational stereo camera with simple
epipolar constraints. Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1, 2006.

[11] J. Kim, K.-J. Yoon, J.-S. Kim, and I. Kweon. Visual slam
by single-camera catadioptric stereo. SICE-ICASE, Interna-
tional Joint Conference, 2006.

[12] J. Kogler, C. Sulzbachner, and W. Kubinger. Bio-inspired
stereo vision system with silicon retina imagers. Lecture
Notes in Computer Science Volume 5815, 2009, pp 174-183,
5815:174–183, 2009.

[13] H. Koyasu, J. Miura, and Y. Shirai. Realtime omnidirec-
tional stereo for obstacle detection and tracking in dynamic
environments. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 31–36, 2001.

[14] J. H. Lee, T. Delbrück, M. Pfeiffer, P. K. Park, C. W. Shin,
H. Ryu, and B. C. Kang. Real-time gesture interface based
on event-driven processing from stereo silicon retinas. IEEE
Trans. on Neural Networks and Learning Systems, 2014.

[15] Y. Li, H. Shum, C. Tang, and R. Szeliski. Stereo recon-
struction from multiperspective panoramas. IEEE TPAMI,
26(1):45–62, 2004.

[16] P. Lichtsteiner, J. Kramer, and T. Delbrück. Improved on/off
temporally differentiating address-event imager. 11th IEEE
International Conference on Electronics, Circuits and Sys-
tems (ICECS 2004), pages 211–214, May 2004.

[17] M. Mahowald. Vlsi analogs of neuronal visual processing: a
synthesis of form and function, ph.d. dissertation. California
Institute of Technology, 1992.

[18] M. Mahowald and T. Delbrück. Cooperative stereo match-
ing using static and dynamic image features. Analog VLSI
Implementation of Neural Systems, 80:213–238, 1989.

[19] D. Marr and T. Poggio. Cooperative computation of stereo
disparity. Science, 194:283287, 1976.

[20] B. A. Olshausen and D. J. Field. Sparse coding of sensory
inputs. Current Opinion in Neurobiology, 14(4):481–487,
2004.

[21] S. Peleg, Y. Pritch, and M. Ben-Ezra. Cameras for stereo
panoramic imaging. IEEE Conference on Computer Vision
and Pattern Recognition, 1:208214, 2000.

[22] E. Piatkowska, A. Belbachir, S. Schraml, and M. Gelautz.
Spatiotemporal multiple persons tracking using dynamic vi-
sion sensor. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 35–40, June
2012.

[23] E. Piatkowska, A. N. Belbachir, and M. Gelautz. Asyn-
chronous stereo vision for event-driven dynamic stereo sen-
sor using an adaptive cooperative approach. In IEEE Inter-
national Conference on Computer Vision (ICCV) Workshops,
2013.

[24] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. Global
solutions of variational models with convex regularization.
SIAM Journal on Imaging Sciences, 3(4):1122 – 1145, 2010.

[25] P. Rogister, R. Benosman, I. Sio-Hoi, and P. Lichtsteiner.
Asynchronous event-based binocular stereo matching. IEEE
Transactions on Networks and Learning Systems, 23(2),
2012.

[26] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Intl
J. Comput. Vision, 47(1):742, 2002.

[27] S. Schraml, A. Belbachir, N. Milosevic, and P. Schön. Dy-
namic stereo vision system for real-time tracking. IEEE
International Symposium on Circuits and Systems, pages
1409–1412, 2010.

[28] S. Sinha, D. Scharstein, and R. Szeliski. Efficient high-
resolution stereo matching using local plane sweeps. IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1582–1589, 2014.

[29] W. Stürzl and H. A. Mallot. Vision-based homing with a
panoramic stereo sensor. Biologically Motivated Computer
Vision Lecture Notes in Computer Science, 2525(1):620–
628, 2002.

[30] T. Svoboda and T. Pajdla. Panoramic cameras for 3d com-
putation. Czech Pattern Recognition Workshop, February
24(1):63–70, 2000.

[31] Velodyne Lidar Inc. HDL High Definition Lidar, 2013.
[32] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and

Y. Shuicheng. Sparse representation for computer vision and
pattern recognition. Proceedings of the IEEE, 98(6):1031–
1044, 2010.


