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Multiple Sensor Fusion and Classification for
Moving Object Detection and Tracking

Ricardo Omar Chavez-Garcia and Olivier Aycard

Abstract—The accurate detection and classification of moving
objects is a critical aspect of advanced driver assistance systems.
We believe that by including the object classification from multiple
sensor detections as a key component of the object’s representation
and the perception process, we can improve the perceived model
of the environment. First, we define a composite object represen-
tation to include class information in the core object’s description.
Second, we propose a complete perception fusion architecture
based on the evidential framework to solve the detection and
tracking of moving objects problem by integrating the composite
representation and uncertainty management. Finally, we integrate
our fusion approach in a real-time application inside a vehicle
demonstrator from the interactIVe IP European project, which
includes three main sensors: radar, lidar, and camera. We test our
fusion approach using real data from different driving scenarios
and focusing on four objects of interest: pedestrian, bike, car,
and truck.

Index Terms—Intelligent vehicles, sensor fusion, classification
algorithms, vehicle detection, vehicle safety.

I. INTRODUCTION

INTELLIGENT vehicles have moved from being a robotic
application of tomorrow to a current area of extensive re-

search and development. The most striking characteristic of an
intelligent vehicle system is that it has to operate in increasingly
unstructured environments, which are inherently uncertain and
dynamic.

ADAS help drivers to perform complex driving tasks to avoid
dangerous situations. Assistance tasks include: warning mes-
sages in dangerous driving situations (e.g., possible collisions),
activation of safety devices to mitigate imminent collisions,
autonomous maneuvers to avoid obstacles, and attention-less
driver warnings.

Perceiving the environment involves the selection of different
sensors to obtain a detailed description of the environment and
an accurate identification of the objects of interest. Vehicle
perception is composed of two main tasks: simultaneous lo-
calization and mapping (SLAM) which generates a map of the
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Fig. 1. General architecture of the perception task and its two main compo-
nents: SLAM and DATMO. Perception provides a model of the environment
usually composed by the vehicle’s location, map of static objects, and a list of
moving objects.

environment while simultaneously localizing the vehicle within
the map given all the measurements from sensors; and DATMO
which detects and tracks the moving objects surrounding the
vehicle and estimates their future behavior. Fig. 1 shows the
main components of the perception task.

Management of incomplete information is an important re-
quirement for perception systems. Incomplete information can
be originated from sensor-related reasons, such as calibration
issues, hardware malfunctions, uncertain detections and asyn-
chronous scans; or from scene perturbations, like occlusions,
weather issues and object shifting. The tracking process as-
sumes that its inputs correspond uniquely to moving objects,
and then focus on data association and tracking problems.
However, in most of the real outdoor scenarios, these inputs
include non-moving detections, such as noisy detections or
static objects. Correctly detecting moving objects is a critical
aspect of a moving object tracking system. Usually, many
sensors are part of such systems.

Knowing the class of objects surrounding the ego-vehicle
provides a better understanding of driving situations. Classi-
fication is seen as a separate task within the DATMO task or
as an aggregate information for the final perception output [1],
[2]. However, classification can help to enrich the detection
stage by including information from different sensor views
of the environment, e.g., impact points provided by lidar and
image patches provided by camera. Evidence about the class of
objects can provide hints to discriminate, confirm and question
data associations. Moreover, knowing the class of a moving
object benefits the motion model learning and tracking. We
believe that classification information about objects of interest
gathered from different sensors at early stages can improve their
detection and tracking, by reducing false positive detections and
mis-classifications [1], [3].

Regarding the state of the art approaches, we assume the
SLAM stage as a solved task, and focus on the detection,
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Fig. 2. Fusion levels within the SLAM and DATMO components interaction.

classification and tracking of moving objects. Precisely, we
include object’s class as the key component of an Evidential
fusion approach that includes uncertainty management from
sensor detections. The goal is to improve the results of the
perception task, i.e., a more reliable list of moving objects of
interest represented by their kinematic state and appearance
information. Therefore, we address the problems of sensor data
association, sensor fusion for object detection, and tracking. We
assume that a richer list of tracked objects can improve future
stages of an ADAS.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces the concepts
behind the Evidential framework. Sections IV and V describe
the vehicle demonstrator and the software architecture of our
vehicle application inside the interactIVe project. Sections VI
and VII detail our proposed strategies to detect objects and
extract their classification information using different sensors.
In Section VIII, we present our fusion approach at detection
level, and the tracking of moving objects. Experimental results
are presented in Section IX. Finally, the conclusion and per-
spectives are stated in Section X.

II. RELATED WORK

Fig. 2 shows the different fusion levels inside a perception
system. Whilst low level fusion is performed within SLAM
component, detection and track level fusions are performed
within DATMO component. At detection level, fusion is per-
formed between lists of moving object detections provided by
individual sensors. At track level, lists of tracks from individual
sensor modules are fused to produce the final list of tracks.

Promising SLAM results obtained in [1]–[3] motivated our
focus on the DATMO component. Whilst Vu [1] and Wang [3]
use an almost deterministic approach to perform the association
in tracking, we use an evidential approach based on mass
distributions over the set of different class hypotheses. Our
review focuses on the fusion methods inside DATMO that use
lidar, camera and radar sensors. This decision comes from our
sensor set-up described in Section IV.

Multi-sensor fusion at track level requires a list of updated
tracks from each sensor to fuse them into a combined list of
tracks. The works in [2], [4], [5] solve this problem focus-
ing on the association problem between lists of tracks, and
implementing stochastic mechanisms to combine the related
objects. By using an effective fusion strategy at this level, false
tracks can be reduced. This level is characterized by including
classification information as complementary to the final output.

Fusion at detection level aims at gathering and combining
early data from sensor detections. Labayrade et al. propose to
work at this level to reduce the number of mis-detections that
can lead to false tracks [6]. Other works focus on data redun-
dancy from active and passive sensors, and follow physical or
learning constrains to increase the certainty of object detection
[7], [8]. These works do not include all the available kinetic
and appearance information. Moreover, at this level, appearance
information from sensor measurements is not considered as
important as the kinetic data to discriminate moving and static
objects.

When classification is considered as an independent module
inside the perception solution, this is often implemented as a
single-class (e.g., only classifies pedestrians) or single-sensor
based classification process [2], [5]. This approach excludes
discriminative data from multiple sensor views that can gen-
erate multi-class modules. Research perspectives point-out the
improvement of the data association and tracking tasks as a
direct enhancement when classification information is managed
at early levels of perception [2], [5], [9].

The most common approaches for multi-sensor fusion are
based on probabilistic methods [1], [2]. However, methods
based on the Evidential framework proposed an alternative not
only to multi-sensor fusion but to many modules of vehicle
perception [5], [6], [9]. These methods highlight the importance
of incomplete and imprecise information which is not usually
present in the probabilistic approaches.

An advantage of our fusion approach at the detection level is
that the description of the objects can be enhanced by adding
knowledge from different sensor sources. For example, lidar
data can give a good estimation of the distance to the object and
its visible size. In addition, classification information, usually
obtained from camera, allows to make assumptions about the
detected objects. An early enrichment of objects’ description
could allow the reduction of the number of false detections and
integrate classification as a key element of the perception output
rather than only an add-on.

III. EVIDENTIAL FRAMEWORK

The Evidential framework is a generalization of the Bayesian
framework of subjective probability [10]. Evidential theory
(ET) allows us to have degrees of belief for a related question
according to the available evidence. ET represents the world in
a set of mutually exclusive propositions known as the frame
of discernment (Ω). It uses belief functions to distribute the
evidence about the propositions over 2Ω. The distribution of
mass beliefs is done by the function m : 2Ω → [0,1], also
known as Basic Belief Assignment (BBA):

m(∅) = 0,
∑
A⊆Ω

m(A) = 1. (1)

Yager’s rule combines two sources of evidence while avoiding
counter-intuitive results, which are present when there is a
considerable degree of conflict (m(∅)) [10]. In this rule, the
conflict value is distributed among all the elements of the frame
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Fig. 3. Left: Images of the CRF vehicle demonstrator. Right: Field of view
of the three frontal sensors used as inputs to gather datasets for our proposed
fusion approach detailed in Sections VI, VII, and VIII.

of discernment rather than only the elements with intersections
of the combining masses:

m(A) =
∑

Xi∩Yj=A

m1(Xi)m2(Yj), A �= ∅, A �= Ω

m(Ω) =
∑

Xi∩Yj=Ω

m1(Xi)m2(Yj) +

K︷ ︸︸ ︷∑
Xi∩Yj=∅

m1(Xi)m2(Yi) .

(2)

A. Evidential Theory for Vehicle Perception

ET has the ability to represent incomplete evidence, total
ignorance and the lack of a priori probabilities. We can encode
implicit knowledge in the definition of the structure of the frame
of discernment. In addition, discounting factors are an impor-
tant mechanism to integrate the reliability of the sources of
evidence, such as sensor performance. Moreover, combination
rules are useful tools that integrate information from different
bodies of evidence. Late stages of intelligent systems, such as
reasoning & decision, can integrate evidence distributions into
the decision making process [11].

When the number of hypotheses is large, ET becomes less
computationally tractable because the belief is distributed over
the power set of all the hypotheses, 2Ω. However, the applica-
tion domain may allow to make assumptions to transform Ω
into a reduced version of the set of possible hypotheses.

IV. VEHICLE DEMONSTRATOR

We used the CRF (Fiat Research Center) demonstrator, from
the interactIVe European project, to obtain datasets from dif-
ferent driving scenarios. In order to accomplish the Continuous
Support functions, the Lancia Delta car (see Fig. 3) is equipped
with processing units, driver interaction components, and the
following front-facing set of sensors: TRW TCAM+camera
gathers B&W images and has a FOV of ±21◦; TRW AC100
medium range radar provides information about moving targets.
It has a detection range up to 150 m, velocity range up to
250 kph, FOV of ±12◦ – ±8◦ (close-medium range), and
angular accuracy of 0.5◦; and an IBEO Lux laser scanner
provides a 2D list of impact points, it has a range up to 200 m
with an angular and distance resolution of 0.125◦ and 4 cm
respectively, and a FOV of 110◦.

Fig. 4. Schematic of our multiple sensor perception system, also known as
Frontal Object Perception (FOP)—Moving Object Detection (MOC) module.
Kinetic and appearance information are extracted from lidar and radar sensors,
and only appearance information from camera.

V. SOFTWARE ARCHITECTURE

Our contribution inside the interactIVe project takes place at
the Perception System (PS) that aims at improving the efficiency
and quality of sensor data fusion, focusing on object detection
and classification. In the PS, multiple functions are developed
for continuous driver support, and also for executing active
interventions for collision avoidance and collision mitigation.

Fig. 4 shows the schematic of our proposed PS, and the
interaction between the detection and classification modules.
The PS aims at detecting, classifying and tracking a set of
moving objects of interest that may appear in front of the
vehicle. The inputs of the fusion module are three lists of
detected objects from three sensors: lidar, radar and camera.
Each object is represented by its position, size and an evidence
distribution of class hypotheses. Class information is obtained
from the shape, relative speed and visual appearance of the
detections. Lidar and radar data are used to perform moving
object detection and, in cooperation with image data, they
extract object classification. Three lists of composite object
descriptions are taken by our fusion approach and delivered to
our tracking algorithm. The final output of the fusion method
comprises a fused list of object detections that will be used for
the tracking module to estimate the moving object states and
deliver the final output of our DATMO solution.

VI. MOVING OBJECT DETECTION

In this stage, we rely on the data provided by the different
sensors to detect the moving objects of interest.

A. LIDAR Processing

We consider the LIDAR (LIght Detection And Ranging)
scanner as the main sensor in our configuration due to its
high resolution and accuracy to detect obstacles. In addition, it
powers the SLAM component of our perception solution. The
main goal of the lidar processing is to get precise measurements
of the shape of the moving obstacles in front of the vehicle.

1) SLAM Component Solution: Although our main contri-
butions are focused on the DATMO component, we solve the
SLAM component to obtain the map and the vehicle’s pose.
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Fig. 5. Occupancy grid representation obtained by processing raw lidar data.
From left to right: Reference image; static occupancy grid Mt−1 after applying
the SLAM solution; current lidar scan; detection of the moving objects (green
bounding boxes).

Following the idea proposed in [1], we employ lidar data (z1:t)
for populating a two-dimensional Bayesian occupancy grid
map. Each cell in the map M is associated with a measure-
ment indicating its probability to be occupied or not by an
obstacle. Vehicle’s location is found by a Maximum Likelihood
approach. It consists of finding the best vehicle tracks estimates
(ω∗) according to a shape model (P (ω|z1:t)), prior model
(P (ω)) and likelihood model (P (z1:t|ω)) (Equation (3)). After-
wards, this method uses the pose estimate and the latest sensor
measurements to update the grid [12].

ω∗ = argmax
ω∈Ω

P (ω|z1:t) for P (ω|z1:t) ∝ P (w)P (z1:t|ω).
(3)

2) LIDAR-Based Detection: As is described in [12], we
focus on identifying the inconsistencies between free and occu-
pied cells within the grid map M while incrementally building
such map. If an occupied measurement is detected on a location
previously set as free, then it belongs to a moving object. If a
free measurement is observed on a location previously occupied
then it probably belongs to a static object.

Using a distance-based clustering process we identify clouds
of cells that could belong to moving objects. This process
provides information about the visible shape of the possible
moving object, an estimation of its size, and the distance to the
object. Fig. 5 shows an example of the evolution of the lidar-
based moving object detection process. Measurements detected
as parts of a moving object are not used to update the map
in SLAM.

B. Camera Images

In order to obtain appearance information from images, we
need to extract discriminative visual features.

1) Visual Representation: The Histograms of Oriented
Gradients (HOG) descriptor has shown promising results in
vehicle and pedestrian detection [13]. We took this descriptor
as the core of our vehicle and pedestrian visual representation.
The goal of this task is to generate visual descriptors of areas
of the image to be used in future stages to determine whether
these areas contain an object of interest or not.

We propose a sparse version of the HOG descriptor (S-HOG)
that focuses on specific areas of an image patch. This allows
us to reduce the common high-dimensional HOG descriptor
[12]. Fig. 6 illustrates some of the blocks we have selected
to generate the descriptors for different object classes. These
blocks correspond to meaningful regions of the object (e.g.,

Fig. 6. Informative blocks for each object class patch, from left to right: pedes-
trian, car and truck. Average size of the S-HOG descriptors for pedestrians,
bikes, cars and trucks are 216, 216, 288 and 288.

Fig. 7. Examples of successful detections of pedestrians (left) and cars (right)
from camera images.

head, shoulder and legs for pedestrians). HOGs are computed
over these sparse blocks and concatenated to form S-HOG
descriptors. To accelerate S-HOG feature computation, we
followed an integral image scheme [14].

2) Object Classification: Due to performance constraints,
we did not implement a visual-based moving object detection.
Instead, we used the regions of interest (ROI) provided by
lidar detection to focus on specific regions of the image. For
each ROI, visual features are extracted, and a classifier is
applied to decide if an object of interest is inside the ROI.
The choice of the classifier has a substantial impact on the
resulting speed and quality. We implemented a boosting-based
learning algorithm called discrete Adaboost [15]. It combines
many weak classifiers to form a powerful one, where weak
classifiers are only required to perform better than chance.

For each class of interest (pedestrian, bike, car, truck), a binary
classifier was trained off-line to identify object (positive) and
non-object (negative) patches. For this training stage, positive
images were collected from public (such as the Daimler dataset)
and manually labeled datasets containing objects of interest
from different object’s viewpoints (frontal, rear, profile) [9].

Fig. 7 shows examples of the pedestrian and car detection re-
sults (green and red boxes respectively) before merging into the
final objects. We estimate the confidence of object classification
for each possible object. Generally, the greater the number of
positive areas (containing an object of interest), the higher the
confidence that the object belongs to that specific class.

C. Radar Targets

The radar sensor uses a built-in mechanism to detect moving
obstacles (targets), specially those with a cross-section similar
to a car. The list of n targets is delivered as input to the per-
ception approach. Each element of the list includes the range,
azimuth and relative speed of the detected target. The sensor
will produce a target for each object with a significant radar
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cross section. However, targets may correspond to static ob-
jects or other moving obstacles, producing false positives. In
a similar way, weak objects like pedestrians can not always
be detected, consequently producing mis-detections. Due to
different dynamics defining the objects of interest, we track
every target using and Interactive Multiple Model (IMM) rep-
resented by constant velocity, constant acceleration and turn-
ing models. IMM provides a trade-off between a Generalized
Pseudo Bayesian method of first (GPB1) and second (GPB2)
degree [3], [16]. It only computes k Gaussians, as in GPB1,
but it still has as output a mixture of k Gaussians as in GPB2.
Data association between targets is achieved by a pruned Multi
Hypothesis Tracking approach.

VII. MOVING OBJECT CLASSIFICATION

We enhanced the common kinetic representation by includ-
ing class information within fusion at the detection level. This
information can help to improve detection associations, better
estimate object’s motion, and reduce the number of false tracks.
However, at detection level, there is not enough certainty about
the object’s class and keeping only one class hypothesis dis-
ables the possibility of rectifying a premature decision.

Our composite representation is formed by two parts:
kinetic + appearance. The former includes position and shape
information in a two dimensional space, inferred from the mov-
ing object detection process. The latter includes an evidence
distribution m(2Ω) for all possible class hypotheses, where
Ω = {pedestrian,bike, car, truck} is the frame of discernment
representing the classes of interest. This representation is used
by the fusion approach to deliver a fused list of object detec-
tions, and to perform tracking.

A. Lidar Sensor

The first part of the object representation can be obtained
by analyzing the shape of the detected moving objects. In
the case of large detections this object is modeled by a box
{x, y, w, l, c}, where x and y are the center of the box, w and l
are the width and length according to the class of object c. For
small detections (mainly pedestrians) a point model {x, y, c}
is used, where x, y and c represent the object center and
class of the object, respectively. The position and size of the
object is obtained by measuring the detected objects in the
2D occupancy grid. The class of the object is inferred from
the visible size of the object and follows a fixed fitting-model
approach. However, no precise classification decision can be
made due to the temporary visibility of the moving objects. For
example, if the width of a detected object is less than a threshold
ωsmall, we may think the object is a pedestrian or a bike but we
are not sure of the real size of the object.

To define the typical size of the classes of interest, we
used a priori knowledge from the distribution of the physical
dimensions of several passenger cars, trucks and motorbikes
sold in Europe [17]. However, instead of keeping only one
class decision, we define a basic belief assignment ml(A)
(Equation (4)) for each A ∈ Ω, which describes an evidence
distribution for the class of the moving object detected by lidar.

We include class-related factors (αp, αb, αc andαt) to represent
the lidar’s performance to detect pedestrians, bikes, cars and
trucks, respectively. Also we use discounting factors (γb and
γc) to indicate the uncertainty of the lidar processing for mis-
detecting a bike or car.

When a bike is detected, due to visibility issues the detected
object can still be a part of a car or a truck, for that reason
evidence is also put in {b, c, t}. For the same reason, when a
truck is detected, we are almost sure it cannot be a smaller ob-
ject. In all the cases, the ignorance hypothesis Ω represents the
lack of knowledge and the general uncertainty about the class.

ml(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ml ({p}) = αp if class = p

ml(Ω) = 1 − αp

ml ({b}) = γbαb if class = b

ml ({b, c, t}) = γb(1 − αb)

ml(Ω) = 1 − γb

ml ({c}) = γcαc if class = c

ml ({c, t}) = γc(1 − αc)

ml(Ω) = 1 − γc

ml ({t}) = αt if class = t

ml(Ω) = 1 − αt.

(4)

B. Camera Sensor

We follow the image processing described in Section VI-B2
to obtain an appearance-based evidence distribution of the
object classes. Lidar detection process provides a set of ROIs
which we use for hypotheses generation. For hypotheses ver-
ification, we use the built off-line classifiers to classify the
different objects.

The camera-based classification generates several sub re-
gions inside each ROI to cover many possible scale and size
configurations. Sometimes a ROI can contain more than one
object of interest. Once we have obtained the object classifica-
tion for each ROI, we generate a basic belief assignment mc

following the Equation (5). This belief assignment represents
the evidence distribution for the classes hypotheses in Ω of
each object detected for camera processing, where αp, αc and
αt are confidence factors and cc represents the camera sensor’s
accurateness, i.e., its rate of correct predictions.

mc(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mc ({p}) = αpcc if class = p

mc ({p,b}) = αp(1 − cc)

mc(Ω) = 1 − αp

mc ({b}) = αbcc if class = b

mc ({p,b}) = αb(1 − cc)

mc(Ω) = 1 − αb

mc ({c}) = αccc if class = c

mc ({c, t}) = αc(1 − cc)

mc(Ω) = 1 − αc

mc ({t}) = αtcc if class = t

mc ({c, t}) = αt(1 − cc)

mc(Ω) = 1 − αt.

(5)
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C. Radar Sensor

Radar targets are considered as preliminary moving object
detections. Therefore, to obtain the object’s class we use the
relative target speed delivered by the sensor. Speed thresholdSp

is statistically estimated using recorded data from the slowest
scenario for vehicles, urban areas. We apply the basic belief
assignment mr (Equation (6)), where α and β are confidence
factors for specific classes.

mr(A)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mr(Ω) = α if objectspeed < Sp

mr ({p,b}) = 1−α

mr(Ω) = 1 − β if objectspeed >= Sp

mr ({c, t}) = β.

(6)

VIII. FUSION APPROACH

Once we have performed moving object detection for each
sensor input, and defined a composite object representation,
the next task is the fusion of object detections and tracking.
We propose a multi-sensor fusion framework placed at the
detection level. Although this approach is presented using three
main sensors, it can be extended to work with more sources of
evidence by defining extra detection modules that are able to
deliver the object representation previously defined.

A. Data Association

When working with many sources of evidence, it is important
to consider the problem of finding which object detections are
related among the different lists of detections provided by the
sensors (sources of evidence).

The combination of information at detection level has the
advantage of increasing the reliability of the detection result
by reducing the influence of inaccurate, uncertain, incomplete,
or conflicting information from sensor measurements or object
classification modules.

Let us consider two sources of evidence S1 and S2. Each of
these sources provides a list of detections A = {a1, a2, . . . , ab}
and B = {b1, b2, . . . , bn}, respectively. In order to combine the
information of these sources, we need to find the associations
between the detections in A and B. All possible associations
can be expressed as a matrix of magnitude |A×B| where each
cell represents the evidence mai,bj about the association of the
elements ai and bj for i ≤ |A| and j ≤ |B|. We can define three
propositions regarding the possible association P (ai, bj):

• 1: if ai and bj are the same object.
• 0: if ai and bj are not the same object.
• Ω : ignorance about the association (ai, bj).

Let us define Ωd = {1,0} as the frame of discernment
to represent the aforementioned propositions. Therefore,
mai,bj ({1}) and mai,bj ({0}) quantify the evidence supporting
the proposition P (ai, bj) = 1 and P (ai, bj) = 0 respectively,
and mai,bj ({1,0}) stands for the ignorance, i.e., evidence that
cannot support the other propositions. These propositions can
be addressed by finding similarity measures between detections
in A and B.

Sensors S1 and S2 can provide detections of a different kind.
These detections can be represented by a position, shape, or
appearance information, such as class. Hence, mai,bj has to
be able to encode all these similarities. Let us define mai,bj

in terms of its similarity value as follows:

mai,bj ({1}) = αi,j , mai,bj ({0}) = βi,j

mai,bj ({1,0}) = 1 − αi,j − βi,j (7)

where αi,j and βi,j quantify the evidence supporting the sin-
gletons in Ωd for the detections ai and bj , i.e., the similarity
measures between them.

We can define mai,bj as the fusion of all possible similarity
measures to associate detections ai and bj . Therefore, we
can assume that individual masses of evidence carry specific
information about these two detections. Let us define mp as
the evidence measurements about the position similarity be-
tween detections in A and B provided by sources S1 and S2

respectively; and mc as the evidence measurements about the
appearance similarity.

Following the analysis made in Section III-A, we use
Yagers’s combination rule defined in Equation (2) to represent
mai,bj in terms of mp

ai,bj
and mc

ai,bj
as follows:

mai,bj (A) =
∑

B∩C=A

mp
ai,bj

(B)mc
ai,bj

(C)

Kai,bj =
∑

B∩C=∅
mp

ai,bj
(B)mc

ai,bj (C)

mai,bj ({Ωd}) = m′
ai,bj

({Ωd}) +Kai,bj (8)

where mp
ai,bj

and mc
ai,bj

represent the evidence about the sim-
ilarity between detections ai and bj according to position and
class information. In addition, the associative property of this
rule allows to combine several sources of evidence (sensors)
[10], [12].

Once matrix MA,B is built, we analyze the evidence dis-
tribution mai,bj for each cell to decide if there is an associ-
ation (mai,bj ({1})), there is not(mai,bj ({0})), or we have not
enough evidence to decide (mai,bj ({1,0})) which can probably
be due to noisy detections.

When two object detections are associated, the method
combines the object representations by fusing the evidence
distributions for class information. This fusion is achieved by
applying the combination rule described in Equation (2). The
fused object representation (kinetic+appearance) is passed as
input to the tracking stage to be considered in the objects motion
model estimation. Non-associated object detections are passed
as well expecting to be deleted by the tracking process if they
are not confirmed by new evidence.

It is important to notice that not all the sensors provide the
same amount and type of information. For example, while radar
data do not include information about the shape of the target,
lidar data provide information about the position and the shape
of the object. If two associated detections have complemen-
tary information, this is passed directly to the fused object
representation; if the information is redundant, it is combined
according to its type. For the position, we use the Bayesian
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based fusion presented in [2], which combines the position
information of two detections by integrating their covariance
matrices. Shape information is usually provided only by the
lidar. As stated above, class information is combined using the
evidential combination rule from Equation (2).

In the next sections, we review our proposed methods to
extract similarity information from the position and class of
the detections. This information is included in Equation (8) to
decide if two detections are associated.

1) Position Similarity: According to the position of two
detections ai and bj , we encode their similarity evidence in
mp

ai,bj
. Based on their positions, we can define function dai,bj

as a distance function that satisfies the properties of a pseudo-
distance metric. We choose Mahalanobis distance due to its
ability to include the correlations of the set of distances. There-
fore, a small value of dai,bj indicates that detections ai and
bj are part of the same object; and a large value indicates the
opposite. All the propositions for mp

ai,bj
belong to the frame

of discernment Ωd. Hence, the BBA for mp
ai,bj

is described as
follows:

mp
ai,bj

({1}) = αf(dai,bj ), mp
ai,bj

({0})
= α

(
1 − f(dai,bj )

)
mp

ai,bj
, ({1,0}) = 1 − α

(9)

where α ∈ [0,1] is an evidence discounting factor and
f(dai,bj ) → [0,1]. The smaller the distance, the larger value
given by function f . In our case we choose f as:

f(dai,bj ) = exp(−λdai,bj ) (10)

where λ is used as a threshold factor that indicates the border
between close and far distances.

2) Class Dissimilarity: Contrary to the evidence provided
by position, class information does not give direct evidence
that supports the proposition P (ai, bj) = 1. This means that
even if two detections are identified with the same class, one
can not affirm that they are the same object. This is due to
the fact that there can be multiple different objects of the same
class in the current driving scenario. However, it is clear that if
two detections have different classes it is more likely that they
belong to different objects. Hence, we use the class to provide
evidence about the dissimilarity between detections: mc

ai,bj
.

The frame of discernment for the class evidence distribution
is the set Ω = {p,b, c, t}. The frame of discernment for detec-
tions’ association is Ωd and was described in Section VIII-A.
Hence, we transfer the evidence from in Ω to Ωd as follows:

mc
ai,bj ({1}) = 0

mc
ai,bj ({0}) =

∑
A∩B=∅

mc
ai
(A)mc

bj (B), ∀A,B ⊂ Ω

mc
ai,bj ({1,0}) = 1 −mc

ai,bj ({0}) (11)

which means that we fuse the mass evidences where no com-
mon class hypothesis is shared between detections in lists A
and B. mc

ai
and mc

bj
represent the BBAs for the class hypothe-

ses of detections in lists A and B. However, as we have no
information about the possible relation of detections with the

same class, we place the rest of the evidence in the ignorance
hypothesis {1,0}.

B. Moving Object Tracking

Using the combined list of object detections provided by
our fusion approach, we modified the model-based moving
object tracking approach described in [1]. We adapted a MCMC
sampling process using our composite representation to find the
best trajectories of tracks (hypotheses) in a sliding window of
time. Generated object hypotheses are then put into a top-down
process taking into account all the object dynamics models,
sensor model, and visibility constraints. However, instead of
searching in all the possible neighbor hypotheses, we use the
class evidence distribution of each object detection to reduce
the search space by considering the hypotheses with more
mass evidence. Two objects have similar classes if their classes
belong to the same general set. Two sets of classes are defined
as general: vehicle = {c, t} and person = {p,b}.

If an object has a high evidence mass in the hypothesis {c},
we only sample the possible hypotheses for c and t. When the
highest mass evidence is placed in a non-singleton hypothesis,
such as vehicle, the search space is expanded to include c and t
samples alike.

We perform a dynamic fusion strategy, as described in [9],
to associate the object’s current state delivered by our fusion
approach, and the object description of the current track. This
allows keeping the object class information up-to-date each
time new sensor data is available. Hence, the final output of
our DATMO solution is composed of a list of moving objects
described by their kinetic information and by a set of all the
possible class hypotheses represented by masses of evidence.

IX. EXPERIMENTAL RESULTS

Using the sensor set-up described in Section IV, we gathered
four datasets from real scenarios: two datasets from urban areas
and two data sets from highways. Both data sets were manually
tagged in order to provide a ground truth reference. We ana-
lyzed the degree of improvement achieved by early inclusion
of class information within the DATMO component. Moreover,
we performed a comparison between the fusion approach at
tracking level described in [9] and our fusion approach at
detection level using the same experimental scenarios.

In our DATMO solution at detection level, we first performed
SLAM with the lidar sensor measurements (see Section VI-A)
to detect the possible moving entities. Among the 2D position
state for each detection, we define the frame of discernment
Ω = {p,b, c, t} for its evidence class distribution. Therefore,
2Ω is the number of all the possible class hypotheses for each
detection. Then, the object representations for lidar, radar and
camera detections are extracted following the methodologies
presented in Sections VI and VII. Once we obtained the object
representations, we perform the fusion at detection level and the
tracking of the fused list of objects as detailed in Section VIII.

Fig. 8 shows two output examples of our complete PS in
highway and urban areas. Both scenarios are considered as
high-traffic scenarios due to the large number of moving objects
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Fig. 8. Results of the PS for highway (1) and urban areas (2). Several objects of interest are detected. Left: camera image and the identified moving objects.
Yellow boxes represent moving objects, red dots represent lidar hits and red circles represent radar detections. Right: top view of the same scene. Tags identify
detected object’s classes. Video demonstrations of our results can be found in http://goo.gl/FuMBC2.

around the vehicle. In both cases, all vehicles, including on-
coming ones, are well detected, tracked and correctly classified:
several cars and two trucks in the highway; and several cars,
one truck and one pedestrian in the urban area. Additionally,
static objects (such as barriers) are also reported and correctly
identified as static obstacles using the method described in
Section VI-A1. In the top view of these examples, moving ob-
jects velocity is estimated by the model-based tracking module
which takes advantage of the composite object representation to
deliver speed and orientation. In the early fusion stage, the radar
Doppler velocity information helps to improve the target speed
estimated by the lidar after its moving direction is known. Also,
the class of the object is improved by the fused information
from the three different sensors providing a more reliable class
hypothesis in the form of a class distribution. The continuous
support applications use this class distribution to decide the
correct actions.

In the output of our perception approach, moving objects
are represented by: location, geometry, object class, speed, and
moving direction. The size of the bounding box is updated using
the visible lidar measurements, the fixed-size class models and
the lateral information from camera classification. The height
of a bounding box is set according to the class of the detected
object and to the result from camera classifiers.

Tables I and II show a comparison between the results
obtained by the proposed fusion approach at detection level and
our previous fusion approach at track level presented in [9].
It takes into account the erroneous classifications of moving
objects. We use four datasets to conduct our experiments:
2 datasets from highways and 2 datasets from urban areas.
We can see that the improvement of the fusion at detection
level in highways with respect to the track level fusion is not
considerable. However, in high-speed situations, the certainty
about the moving vehicles is quite important. Hence, this small
improvement is very useful for the final applications, such as
continuous support systems. Urban areas represent a modern
challenge for vehicle perception. The improvement of the fu-

TABLE I
FUSION RESULTS. NUMBER OF c AND t MIS-CLASSIFICATIONS

TABLE II
FUSION RESULTS. NUMBER OF p AND b MIS-CLASSIFICATIONS

sion approach at detection level was considerable compared to
our previous fusion approach. Here, the richer representation of
sensor detections and the data association relations allowed the
early detection of real moving vehicles.

Regarding the pedestrian classification results, we obtained
similar improvements to those obtained for vehicle detections.
The problem of small clusters detected by lidar as mov-
ing obstacles but without the certainty of being classified as
pedestrians is mainly overcome by the early combination of
class information from radar and camera-based classification.
Furthermore, the classification of moving objects (not only
pedestrians) in our proposed approach takes on average less
sensor scans than the compared fusion approach described in
[9]. This is due to the early integration of the knowledge about
the class of detected objects placed in mc

a and mc
b, which is

directly related to the reduced search space for the shape and
motion model discovering process performed by the MCMC
technique.
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TABLE III
RESULTS OF OUR PS IN FOUR SCENARIOS: HIGHWAY, URBAN AREA, RURAL ROAD AND TEST TRACK.

FOUR OBJECTS OF INTEREST ARE CONSIDERED: pEDESTRIAN, bIKE, cAR, AND tRUCK

A. On-Line Evaluation

Based on the running-time statistics of our PS, in urban areas
(the most challenging scenario), the average computing time
is 40 ms which fulfills the processing time requirement of the
designed real-time platform (75 ms). In rural areas and high-
ways, the processing of the whole PS can be reduced to 30 ms.

Table III summarizes the results collected after testing our
PS with on-line data in four different scenarios. Correct de-
tections represent true moving objects. False detections repre-
sent detections wrongly recognized as moving objects. Correct
classifications represent well classified moving objects. False
classifications are self-explanatory. For clarity sake, the number
of correct and false detections, and classifications are also
represented by percentages. Four objects of interest were taken
into account: pedestrian, bike, car and truck.

In test track scenarios, where only few cars and pedestrians
are present, the detection and classification rate of pedestrians
and cars are nearly perfect (96–100%). This scenario does
not contain many common driving situations, such as several
moving objects and high traffic dynamics. However, it allows
us to test specific components of the PS, e.g., pedestrian and
vehicle classification, and moving vehicle tracking.

In highways, the detection rate of vehicles is also improved:
car (97.8%), truck (96.4%) where the missed detections are due
mainly to inherently noisy and cluttered data (e.g., lidar impacts
on the ground). The large size of the truck makes the truck
detection not as accurate as car detection since it is sometimes
confused with the barrier. The false detection rate (2.2%) is due
mainly to the reflection in raw lidar data which creates ghost
objects and the noisy radar target detection. However, the fusion
approach allows to obtain a highly correct classification rate for
both cars or trucks whilst keeping a very low false classifica-
tion rate.

In urban areas, vehicle detection and classification is still
high, considering the increased number of moving obstacles
and the cluttered environment. However, the false detection rate
is higher than in highway scenarios. This increase is due to
the highly dynamic environment and to the reduced field of
view in high traffic situations. Moreover, the pedestrian false
classifications commonly appears when the classifiers mis-
classify traffic posts as pedestrians. These mis-classifications
suggest the construction of more robust visual classifiers or the
implementation of more discriminating visual descriptors.

In Rural roads, several moving objects may appear, but high
traffic dynamics are not present. Besides, there are less traffic

landmarks. The high false-classification rate in this scenario
is due to the increasing number of natural obstacles, such as
bushes and trees. The common false classifications are due to
false moving objects (mainly bushes) preliminary classified as
trucks or pedestrians. One solution could be to implement a
dedicated classifier to discard this type of obstacles.

X. CONCLUSION AND PERSPECTIVES

In this paper we have reviewed the problem of intelligent
vehicle perception. Specifically, we have focus on the DATMO
component of the perception task. We have proposed the use
of classification information as a key element of a composite
object representation, where not only kinetic information but
appearance information plays an important role in the detection,
classification and tracking of moving objects of interest. We
have analyzed the impact of our composite object descrip-
tion by performing multi-sensor fusion at detection level. We
used three main sensors to define, develop, test and evaluate
our fusion approach: lidar, radar, and camera. Moreover, our
complete perception solution was evaluated using on-line and
off-line data from a real vehicle of the interactIVe European
project.

Integrating class information at the detection level, allowed
the fusion to improve the detection by considering an evidence
distribution over the different class hypotheses of the detected
objects. This improvement directly reduces the number of false
detections and false classifications at early levels of the DATMO
component. In addition, the tracking stage benefits from the
reduction of mis-detections and from the more accurate clas-
sification information to accelerate the tracking process.

A. Perspectives

As is shown in [18], 3D-based representations (e.g., voxels
segments) can provide more information about the geometry
and class of the objects of interest around the ego-vehicle, and
the common obstacles that generate false classifications (e.g.,
trees, bushes and poles).

Section IX has shown that sometimes the classification preci-
sion varies according to the current driving scenario. Promising
results on the field of scene classification can power context-
based learning methods to estimate parameters in the detection
and classification modules, thus generating reliability factors
closer to the real driving situation.
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Currently, we are working on the extension of our multi-
sensor fusion approach as an integral sensory-motor perception
method for developmental systems. This method aims at learn-
ing representations and motor skills while interacting with the
environment.
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