IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 7, JULY 2015

1359

Abandoned Object Detection via Temporal
Consistency Modeling and Back-Tracing
Verification for Visual Surveillance

Kevin Lin, Shen-Chi Chen, Chu-Song Chen, Daw-Tung Lin, Senior Member, IEEE, and Yi-Ping Hung

Abstract—This paper presents an effective approach for
detecting abandoned luggage in surveillance videos. We combine
short- and long-term background models to extract foreground
objects, where each pixel in an input image is classified as a
2-bit code. Subsequently, we introduce a framework to identify
static foreground regions based on the temporal transition of code
patterns, and to determine whether the candidate regions contain
abandoned objects by analyzing the back-traced trajectories of
luggage owners. The experimental results obtained based on
video images from 2006 Performance Evaluation of Tracking
and Surveillance and 2007 Advanced Video and Signal-based
Surveillance databases show that the proposed approach is effec-
tive for detecting abandoned luggage, and that it outperforms
previous methods.

Index Terms— Abandoned luggage detection, abandoned
object detection, short-term background model, long-term
background model, object detection and tracking, visual
surveillance.

I. INTRODUCTION

N THE visual surveillance research, detecting abandoned

luggage is referred to as the problem of abandoned-object
or left-luggage detection. It is a crucial task for public
security, particularly for identifying suspicious stationary
items. Because there is no object type of category that can be
assumed as having been abandoned, common object detection
methods such as training an object detector for a particular
category of objects are inappropriate for performing this
task. To address this problem, foreground/background extrac-
tion techniques are suitable for identifying static foregrounds
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regions (i.e., objects that remain static for a long time) as
left-luggage candidates.

A. Related Works

The algorithms for identifying a static foreground or
abandoned object can be classified into three categories.
The first category involves constructing double-background
models for detecting a static foreground [1]-[3]. The double-
background models are constructed using fast and slow
learning rates. Subsequently, the static foreground is localized
by differentiating between the two obtained foregrounds.
A weakness of these methods is the high false alarm rate,
which is typically caused by imperfect background subtraction
resulting from a ghost effect, stationary people, and crowded
scenes. In addition, these methods involve using only the
foreground information per single image to locate regions of
interest (ROIs) of abandoned-object candidates. Consequently,
temporally-consistent information that may be useful for
identifying sequential patterns of ROIs may be overlooked.

The second category of methods for extracting
static foreground regions involves using a specialized
mixture of Gaussian (MOG) background model. In previous
researches [4]-[6], three Gaussian mixtures were used to
classify foreground objects as moving foreground, abandoned
objects, and removed objects by performing background
subtraction. In addition, the approach proposed in [6] uses
visual attributes and a ranking function to characterize various
types of alarm events.

The third category involves accumulating a period of binary
foreground images or tracking foreground regions to identify
a static foreground. The methods proposed in [7] and [8]
involved localizing the static foreground based on the pixels
with the maximal accumulated values, which were subse-
quently considered the candidate regions of stationary objects.
However, this category of methods fails in complex scenes.

LV et al. [9] used a blob tracker to track foreground objects
based on their size, aspect ratio, and location. Left luggage
is identified when a moving foreground blob stops moving
for a long period. Li et al. [10] tracked moving objects
by incorporating principle color representation (PCR) into a
template-matching scheme, and also by estimating the status
(e.g., occluded or removed) of a stationary object.

Rather than using a single camera, some approaches
use multiple cameras for detecting abandoned Iuggage.
Auvinet et al. [11] employed two cameras for detecting
abandoned objects, and the planer homography between
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two cameras was used to regulate the foreground tracking
results.

To fulfill the semantic requirement of abandoned
luggage events where a person drops their luggage and
then leaves, some of the aforementioned methods combine a
tracker to track the involved person(s) for further verification.
Liao et al. [7] tracked luggage owners based on skin color
information and by performing contour matching with a
Hough transform. In [1], Kalman filter (KF) and unscented
KF (UKF) were used to track foreground objects (including
people and carried luggage) based on low-level features, such
as color, contour, and trajectory. Tian et al. [4] integrated
a human detector and blob tracker to track the owner of
abandoned luggage, and the corresponding trajectory was
recorded for further analysis. Fan er al. [6] used a blob
tracker to track moving people close to the left-luggage. The
obtained movement information was used as an input for
their attribute-based alert ranking function.

B. Our Approach

In this paper, we propose a temporal dual-rate foreground
integration method for static-foreground estimation for single-
camera video images. Our approach involves constructing both
short- and long-term background models learned from an
input surveillance video on-line. Subsequently, we introduce
a simple pixel-based finite-state machine (PFSM) model that
uses temporal transition information to identify the static
foreground based on the sequence pattern of each object pixel.

Because the proposed approach involves using temporal
transition information, we can reduce the influence of imper-
fect foreground extractions in the double-background models,
thereby improving the accuracy of the constructed static
foreground inference. An owner-tracking procedure is also
employed in our method to semantically verify the abandoned-
object event. Contributoins of the proposed method over
previous methods are summarized as follows.

1) We introduce a dual-rate background modeling
framework with temporal consistency. It performs
considerably better than the single-image-based double
background models in [1]-[3].

2) We develop a simple spatial-temporal tracking
method for back-tracing verification. Compared to the
frame-by-frame tracking approaches such as the
KF- or UKF employed in [1], our approach is superior
in handling temporary occlusions and is still highly
efficient to implement.

3) Experimental results on benchmark datasets (PETS2006
and AVSS2007) show that our method performs more
favorably against all of the compared methods [1]-[8].

The remainder of this paper is organized as follows.
Section II details the proposed algorithm, Section III shows the
experimental results, and finally, our conclusion and discussion
are offered in Section IV.

II. TEMPORAL DUAL-RATES FOREGROUND
INTEGRATION METHOD

The proposed abandoned-object detection method is based
on background modeling and subtraction. The following
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subsection provides a conceptual review of background-
subtraction and the associated learning rates for updating
a background model. Subsequently, the remaining
subsections introduce our algorithm for identifying static
foreground regions.

A. Review of Background Modeling and Learning Rates

Background subtraction is an essential technique for detect-
ing moving objects in surveillance systems. To apply this
technique, a pixel-based background model is typically learned
from preceding images. The learned background model is
used to identify whether each pixel of the incoming image
is a background pixel. When a pixel in an incoming image
is identified as a background pixel, the associated features
(e.g., pixel color) can subsequently be used to update the
background model to more suitably represent the recently
observed pixel values. Given a sequence of images I; (t € N)
of size m x n, the principle of a general background modeling
and updating procedure can be summarized as follows:

1) Initialize a background model B(x, y) for each pixel

x,y),0<x<m-—1l,and0<y<n-—1.

2) For every pixel (x,y) of the incoming image I;,
if I;(x, y) € B(x, y), then (x, y) is classified as a back-
ground pixel, otherwise it is considered a foreground
pixel.

3) For every newly identified background pixel (x,y),
update B(x,y) by considering the new training
sample, I (x, y).

4) t < t+1, go to Step 2).

In this procedure, a learning rate 1 € [0, 1] is typically
applied to update the background in Step 3). The learning rate
provides a tradeoff between AB and (1 — A)I;, and thus the
preceding model B is tuned toward the new training data
I, faster when 1 is smaller in the incremental updating.
For example, in the MOG method proposed in [12], the
background model B(x,y) is recorded as an mixture-of-
Gaussian distribution in RGB color space. The learning rate
A is applied to update the mixture-distribution model when
the new color I;(x,y) is observed and (x,y) is identified
as a background pixel. Similar updating mechanisms exist in
other methods such as Codebook [13], enhanced Gaussian
mixture model (EGMM) algorithm [14], and coarse-to-fine
approach [15].



LIN et al.:

Frame(n) Frame(n+60) Frame(n+120)

ABANDONED OBJECT DETECTION VIA TEMPORAL CONSISTENCY MODELING AND BACK-TRACING VERIFICATION

1361

Frame(n+ 1 80) Frame(n+240) Frame(n+300)

Long-term(n) Long-term(n+60) Long-term(n+120)

Short-term(n) Short- term(n+60) Short-term(n+120)

Fig. 2.

B. Long-Term and Short-Term Integration
Background Modeling

Figure 1 shows an overview of the integrated background
modeling method proposed in this study. First, we describe the
long- and short-term models built in our approach for static
foreground detection. The proposed algorithm starts from a
generic background modeling method operated at two learning
rates. Without loss of generality, we select the MOG method
in [12] as our background modeling method; however, other
methods equipped with learning-rate mechanisms for updating
background models can be used in our framework as well.

As aforementioned, a small learning rate Ag updates the
background model at a faster speed. The model that learns at
this small rate is called the short-term background model Bg,
where Fg denotes the binary foreground image obtained
via the short-term model. By contrast, a large learning
rate Ay yields the model that is updated at a slower speed.
Similarly, the model that learns at this rate is referred to as the
long-term background model B, where Fp denotes the
binary foreground image obtained using the long-term model.
Figure 2 shows an example of the foreground regions obtained
using the long- and short-term background models.

The assembly of long- and short-term background models
is suitable for detecting stationary objects. Figure 3 shows
an example of an abandoned-object event. Whenever luggage
is left by an owner, the long-term model detects it as a
foreground object, as shown in Figure 3(c). Moreover, because
of the faster updating rate, the left-luggage would be classified
as a background object by the short-term model, as shown
in Figure 3(d). Accordingly, a pixel is represented as a two-
bit code S; by concatenating the detected long- and short-term
foregrounds, as follows:

S; = Fr(i)Fs(i), (D

where Fp (i), and Fs(i) € {0, 1} represent the binary values
of pixel i of the foreground images.

Long-term(n+180) Long-term(n+240) Long-term(n+300)

Short-term(n+180) Short-term(n+240) Short-term(n+300)

Background subtraction results of PETS2006-S1 video sequence.

Owner
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Object

(a) Input

(d) Short-term
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Fig. 3.  An example of object abandoned event, where the combination
of long-term and short-term foreground results is well suited for abandoned
luggage detection.

TABLE I
PIXEL CLASSIFICATION FROM LONG-TERM AND
SHORT-TERM BACKGROUND MODEL [2]

Si Hypotheses of the pixel ¢
00 Background

01 Uncovered background
10  Candidate static foreground
11 Moving foreground

Therefore, there are four states represented by the two-bit
code S;, as shown in Table I, and they are expressed as follows:

e S; = 00 indicates that pixel i is a background pixel
because it is classified as background by both B; and Bg.

o S; =01 implies that pixel i is an uncovered background
pixel that has been temporarily occluded by an object and
then exposed in a recent image.

e S; = 10 indicates that pixel i is likely to be a static
foreground pixel.

e S; = 11 indicates that pixel i corresponds to a moving
object.

When detecting abandoned objects, we are primarily con-
cerned which pixels exhibiting a state value of 10, because
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Fig. 4. PFSM for static foreground detection. M F is moving foreground,
T is the transition time for changing state from 10 to 10.

1) these are foreground pixels that have existed for a long
time, as indicated by their long-term presence under the
long-term model, and 2) they have not moved or vibrated
for a considerable period of time; thus, the short-term model
is expected to reject it soon. These properties confine the
aforementioned static foreground pixel and make the state
codes suitable for identifying abandoned object candidates.

However, these codes are defined for a single image
only. Because noise could result from imperfect background
modeling, these codes could be temporary or imprecise.
Hence, the pixel classifications in Table I for single images
are typically insufficient for identifying abandoned objects in
an uncertain environments, which is why methods for a single
or isolated images, such as that proposed in [2], are unreliable
and frequently fail in practical cases.

In this paper, we propose using temporal-continuity
information to improve the performance. We assert that the
code pattern in an image sequence should primarily follow
a temporal rule, and that the rule is representable by a very
simple finite-state machine (FSM) model. Details are given in
the next section.

C. Pixel-Based Finite State Machine (PFSM)

Instead of recognizing the status of each pixel based on
only a single frame, we use temporal transition information to
identify the stationary objects based on the sequential pattern
of each pixel. A pixel is associated with only one state at
a time. Based on long- and short-term background models,
the state of pixel i can be changed from one state at time ¢
to another state at time ¢ + 1. Accordingly, we construct
a simple FSM model to describe the behavior of each pixel.
We detect the static foreground by identifying a specific pattern
of transitions. Figure 4 illustrates the particular transition for
identifying the static foreground.

As shown in Figure 4, the transition pattern describes the
static foreground in an object-abandoned event. Starting from
an initial state, the system is triggered by S; = 11, indicating
that pixel i is currently occluded by a foreground region.
Hereafter, when a person abandons their luggage, the short-
term method soon updates the luggage into its background
model, whereas the long-term method does not; thus, the
status of this site is changes to S; = 10. Finally, when
the status of §; = 10 persists for a certain duration of
time (i.e., for Ty times), we then conjecture that pixel i
has become a part of the static foreground. During this
procedure, only those pixels associated with this particular

CSF denotes candidate static foreground and SF represents static foreground.

transition pattern are considered static foreground pixels.
Otherwise, the state of pixel i would return to the initial
state and restart until the initial state S; = 11. The PFSM
model thus describes the following rule: given a two-bit
code sequence, if there is consecutive subsequence starting
by a series of 11 and followed by a sufficiently long series
of 10, then this subsequence is a detection of the static
foreground.

For each frame, those pixels accepted by the PFSM
model are collected. Subsequently, we perform a connected
component analysis to group those pixels and remove the small
components. If no pixel is accepted by the PFSM model, or
if all of the components in the current frame are too small,
no further verification is performed. Otherwise, the preserved
components (i.e., the static foreground pixels) are considered
the abandoned luggage candidates in the current frame, and
they are sent to the subsequent stage for further verification by
using the back-tracing algorithm, as detailed in the following
section.

D. Back-Tracing Verification

Next, we verify whether the luggage is abandoned or simply
placed on the ground for a short time by using the back-tracing
verification procedure. Accordingly, our system first verifies
whether the luggage owner is close to the luggage. If the owner
does not return to his or her luggage, the object is considered
abandoned. To perform the aforementioned semantic analysis
of the object-abandoned event, the back-tracing verification is
performed as follows.

The static foregrounds found in Section II-C are
subsequently considered luggage candidates. When a static
foreground is deemed a left-luggage candidate at time ¢ and
no other moving foreground objects are within its neighbor
region of radius D, we then return from the current frame ¢
to the preceding frame fy9 = ¢ — Ty, which denotes the
moment that the owner has likely put down the luggage,
where T is the transition-time constant employed in our PFSM
model (Figure 4). Let the image position of the left luggage
candidate be p at time #9. Centered at p, we create a spatial-
temporal window Wy of size (2, ), where r specifies the
radius of a circle centered at p, and d denotes the time interval
[t0, t0 + J].

Subsequently, for window W, we consider all foreground
blobs identified using the background subtraction algorithm.
From these blobs, we then select the one that is approximate
to the shape of human by using the height/width estimator
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in [1] and the human detector in [16] and [17], which filter
the static foreground objects that could be human.

We give a brief review of the human detection method
below. The deformable part-based model (DPM) detector [16]
is one of the state-of-the-art human detection algorithms,
which employs the sliding window technique with multiple
filter kernels to detect the object in an image. The object to
be detected is represented using a root filter and several part
filters. The root filter describes the overall appearance of the
object while the part filters depict partial regions of the object.
The object is located when the region is voted with the highest
scores by root and part filters. However, due to the number
of filters adopted, the computation cost becomes extremely
high. To overcome this difficulty, Dubout and Fleuret [17]
approximate the sliding window technique as a convolutional
procedure. According to the theorem that time-domain convo-
lution is equivalent to frequency-domain multiplication, the
part-based human detector is speeded up by fast Fourier
transform and is employed in this work.

The foreground region containing human is then treated as
the owner blob for further tracking, and we denote its image
position as pjp. If there are more than one humans detected,
we simply choose the blob closest to p as the most-fit blob
position pj.

We extract the color distribution as a feature representation
of the foreground blobs. Next, centered at p;, we creat a
new spatial-temporal window Wy of the size (2, 5). We then
employ the Bhattacharyya coefficient to identify the blob with
the color distribution most similar to that of the owner in Wy,
and then create a window W centered at the newly identified
blob. The aforementioned procedure is then used to track the
blob representing the owner until the time exceed the original
time ¢ or until the tracked blob is outside of the neighbor
region (i.e., within radius D) centered at the candidate luggage.

An advantage of the aforementioned procedure is that the
time interval J is used in the spatial-temporal domain, and
hence it can track the target when occlusion occurs within J.
Thus, unlike the frame-by-frame tracking approaches, such
as the KF- or UKF-based approaches employed in previous

studies of left-luggage detection [1], our approach is more
powerful for handling temporary occlusions, and it is still
highly efficient to implement because only the foreground
blobs within a limited number of spatial-temporal windows
are considered.

Figure 5 demonstrates our back-tracing result of the first
sequence. Figure 5(a) and Figure 5(b) show the 3D trajectory
constructed based on our spatial-temporal structure. The back-
tracing algorithm initiates the search for the owner from the
location of the luggage, and then proceeds examining similar
foreground patches. Figure 5(c) shows the pedestrian detection
result. Figure 5(d) shows a summary of the object-abandoned
event in the first sequence. The regions denoting the owner are
displayed sequentially with rainbow colors depicting various
time stamps of the event.

Our tracking procedure is extendable for preserving multiple
hypotheses of blobs tracked simultaneously when employing
a probabilistic framework such as particle filtering (PF)
to represent the multiple hypotheses for dynamic tracking.
However, PF is slow and cannot fulfill the real-time verifi-
cation requirements of most visual surveillance applications.
Hence, we use the aforementioned single-hypothesis approach,
which can be generalized for more effective tracking when
necessary.

E. Abandoned Object Event Analysis

Figure 6 shows the proposed system architecture. Once the
trajectory of owner is obtained, a warning is issued that the
luggage has been abandoned in accordance with the following
two rules, as defined by PETS2006 [18].

1) Temporal rule: The luggage is declared an unattended
object when it is left by its owner, and the luggage is
not reattended within time T'= 30 seconds.

2) Spatial rule: The unattended luggage is declared an
abandoned object when it is left by its owner. When
the distance between the owner and luggage is greater
than a predefined distance D= 3 m, then an alarm event
is triggered.
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Fig. 7. Performance evaluation using different parameters on PETS2006.
We restricted the learning rates A5 and A in a fixed ratio Ag/A; = 1/10. The
configuration, 15 = 0.0002 and A; = 0.002, demonstrates a more favorable
performance. Red, green, and blue bar represent F-measure, precision, and
recall, respectively.

According to the PFSM, the temporal rule is
satisfied by letting 7y = 30f frames, where f is the
frames per second (fps) at which the video is captured.
The spatial rule is verified by examining the trajectory of
owner. We create a luggage-centered ROI with a radius of
D = 3u pixels (where u denotes the scaling factor to
convert pixels into real-world distances), and investigate
whether the owner is within and then left the ROI. An alarm
is raised when both the spatial and temporal rules are satisfied.

III. EXPERIMENTAL RESULTS
A. Implementation Details

The proposed system was developed using the programming
language C/C++. The overall computation speed is 29 fps
when testing the video of 360x240 pixel video by using a
general purpose laptop with a 2.4 GHz Intel Core-i7 processor.

Various previous studies have proposed background sub-
traction algorithms, including MOG [12], Codebook [13],
EGMM [14], and coarse-to-fine approach [15]. EGMM, which
is available in the OpenCV library, is used in this work because
of its high performance.

In this study, the long- and short-term background models
is constructed using EGMM, which is similar to MOG with
an additional mechanism for adapting the number of Gaussian
components for each pixel, instead of using a fixed number
of Gaussian components for every computation. To satisfy the
characteristics of dual-background models, the learning rate of
each background model should differ significantly. Based on
our empirical study, we restricted the learning rates Ag and Ay,
in a fixed ratio As/Ar = 1/10, and find that the short- and
long-term models can be distinguished well in practice.

First, we perform a preliminary experiment on the
PETS2006 dataset by varying As and Ay, and evaluate the per-
formance of the abandoned object detection. Figure 7 shows
that when Ag varies from 0.0001 to 0.0016 (and A, varies from
0.001 to 0.016, respectively), the precision value remains the
same while the recall value becomes different, where FM is
the F-measure values [19] that can be expressed as a harmonic

mean between precision P and recall R with FM = 2’;?_}? .
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TABLE II
PERFORMANCE COMPARISON ON PETS2006 VIDEO DATASET

Video  Difficulty [2] [1] [7] [10] [4] [11] Ours
S1 * T T T T T T T
S2 HAE N/A T T F T T T
S3 * N/A T N/A T F T T
S4 HAAE N/A N/A T T T T T
S5 ok N/A N/A T F T T T
S6 HAE N/A N/A T T T T T
S7 o N/A T T T T T T

This reveals that our method is highly stable in the precision,
i.e., the abandoned objects detected are correct, but could miss
to detect some of the abandoned objects because of the non-
perfect recall rate for the PETS2006 dataset when different
parameters are selected. Among them, s = 0.0002 and
Ar = 0.002 perform more favorable against the others. Hence,
we choose this setting and use the identical parameter values
for all of the experiments conducted by this study, including
the experiments for the datasets of AVSS2007 and ABODA
(Section II1.D).

In addition, as the goal is to detect the abandoned object,
considering only the region-of-interest area is a natural way
to reduce imperfect background initialization. We follow the
previous studies (such as [2]) that manually marked the
train station platform in AVSS2007 and the waiting area in
PETS2006 for abandoned object detection.

B. Results on PETS2006 and AVSS2007

We conducted experiments using the public datasets
PETS2006 [18] and AVSS2007 [20].

1) PETS2006: The PETS2006 dataset comprises seven
sequences of various scenarios. Each sequence includes an
abandoning event except the third one. In the third sequence,
a person puts down his bag for a short time; because the
owner dose not abandon the luggage, no alarm should be
triggered. Table II compares the results of our approach with
those obtained by several other state-of-the-art studies [1], [2],
[4], [7], [8], [10], [11]. Some previous studies have evaluated
their methods by selecting a limited number of sequences
and showing that their methods achieve high accuracy for
those sequences only. By contrast, we have evaluated all
seven sequences, and our method successfully detects the
luggage-left events for the entire dataset of PETS2006 without
triggering any false alarms. Figures 8 and 9 show the results
of the 7th and 5th sequences of PETS2006, respectively.

Table III shows further evaluations of the precision-recall
of the proposed algorithm. The compared approaches are
sorted in order of their corresponding F-measure values. The
method in [11] accurately detects all abandoned objects, as
shown in Table II. However, their method results in several
false alarms in Sequence 5 and 7; consequently, their
F-measures are lower than those of the other methods.
Sequence 5 and 7 are challenging to solve because of the
problems with crowded scenes and occlusion. However, our
temporal consistency model robustly and successfully local-
izes the abandoned luggage. Furthermore, our back-tracing
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Fig. 9. Detection results of the 5th sequence of PETS2006.

TABLE III
COMPARISON OF DIFFERENT METHODS ON PETS2006 VIDEO DATASET

- [2] [11]  [10] [7] [6] [4] Ours
Precision ~ 0.03  0.58 1.0 075 095 0.85 1.0
Recall 1.0 1.0 0.71 1.0 0.80 1.0 1.0
F-measure 0.05 073 083 0.86 0.87 092 1.0

method performs adequately and raises the alarm in a timely
manner.

2) AVSS2007: We also tested our system by using the
AVSS2007 dataset. The dataset was obtained from the
i-LIDS video library, which includes several scenarios, such
as abandoned luggage and parked vehicles. We evaluated
the left-baggage scenario to fit the scope of this study.
The abandoned-luggage dataset comprises three sequences
(AB-EASY, AB-MEDIUM and AB-HARD) that are labeled
with various difficulty levels according to the luggage size and
crowd density. Each sequence contains only one abandoned-
luggage event, similar to the PETS2006 dataset. We followed
the detection rules provided by i-LIDS, which stipulates that
the detection area is restricted to the platform of the train
station. Some detection results of AVSS2007 are shown in
Figures 10 and 11.

For the sake of comparison, Table IV shows the precision-
recall of our method and those reported by other state-of-the-
art studies [2]-[8]. The luggage-left event is easily detected
because of the large size of luggage and less occlusion
in AB-EASY. By contrast, AB-MEDIUM and AB-HARD are
more difficult because they involve scenes with small pieces
of luggage and dense crowds. Because of the luggage was
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Fig. 10. Detection results of the sequence AB-Easy of AVSS2007.

Abandoned Object Static foreground

Result of back tracing
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Detection results of the sequence AB-Medium of AVSS2007.

Abandoned Object

Static foreground Result of back tracing

Fig. 11.

TABLE IV
COMPARISON OF DIFFERENT METHODS ON AVSS2007 VIDEO DATASET

- [2] [3] [5] (4] (6 [71 [8] Ours
Precision  0.05 021 040 035 097 10 1.0 1.0
Recall 1.0 1.0 0.67 1.0 1.0 1.0 1.0 1.0
F-measure 0.09 035 050 052 098 1.0 1.0 1.0

temporarily occluded, several methods yielded false alarms,
and they were thus considered less promising. Noteworthily,
our method localize the abandoned objects in all three
sequences, as shown in Table IV. The table also shows
that [7] and [8] outperform several related works, as dose
our method. However, [7] results in several false alarms when
testing the PETS2006 dataset, and the method in [8] is eval-
vated using the AVSS2007 dataset only, which is considered
limited in the context of comparative research. In the context
of evaluating both the PETS2006 and AVSS2007 datasets,
the proposed method is more effective than the previous
studies for detecting abandoned objects, and achieves the best
performance in general.

C. Effectiveness of PFSM and Back-Tracing Verification

This section validates the effectiveness of the proposed
PFSM model and back-tracing procedure in improving the
performance of abandoned-luggage events. Hereafter, we
define DualBG-only as the method that uses only the pixel
classifications from the dual-background models shown in
Table I in each single image to detect the abandoned objects.
In addition, we define PFSM-only as the method that removes
the back-tracing module in our algorithm.
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TABLE V
PERFORMANCE COMPARISON ON PETS2006

Method Precision  Recall
DualBG-only 0.03 1.0
PFSM-only 0.50 1.0
PFSM with back-tracing (Ours) 1.0 1.0

TABLE VI
PERFORMANCE COMPARISON ON AVSS2007

Method Precision  Recall
DualBG-only 0.05 1.0
PFSM-only 0.43 1.0
PFSM with back-tracing (Ours) 1.0 1.0

Fig. 12. Examples in ABandoned Objects DAtaset (ABODA). The dataset
consists of different scenarios include (a) and (b) outdoor environment,
(c) indoor environment, and (d) sudden light changes condition.

For comparison, Table V and Table VI presents the
performance under various configurations. All methods attain
high recall values; thus, reducing the occurrence of false
alarms (i.e., improving the precision) is a critical problem.
DualBG-only provides unstable prediction caused of noisy
and imperfect background subtraction processes. Compared
to the PFSM-only method, the temporal transition pattern
analysis is critical for detecting the abandoned objects. The
PFSM effectively reduces the occurrence of false alarms, and
it improves the overall precision to 50% on the PETS2006
dataset and 43% on the AVSS2007 dataset. Most of the
false alarms generated by the PFSM are associated with
cases of a person remaining temporarily still; for example,
in Sequence 3 of the PETS2006 dataset, a person sets down
his luggage and rests for a short period. Hence there should be
no abandoned event in this case; however, the PFSM issues an
alarm because it could not verify whether the owner had left.
Therefore, combining the back-tracing function is assisted
in correctly identifying the alarm event. Although tracking
remains challenging in crowded scenes, however, we only need
to trace the owner in the luggage-centroid ROI, in accordance
with the temporal and spatial rules stipulated by PETS2006.
It is adequately efficient when tracking the owner by using a
simple blob tracker with a human-detector verification method

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 7, JULY 2015

TABLE VII
DETECTION RESULTS ON OUR OWN DATASET ABODA

Sequence  Ground-truth TP  FP Scenario
Videol 1 1 0 Outdoor
Video2 1 1 0 Outdoor
Video3 1 1 0 Outdoor
Video4 1 1 0 Outdoor
Video5 1 1 1 Detection in night
Video6 2 2 0 Light switching
Video7 1 1 1 Light switching
Video8 1 1 1 Light switching
Video9 1 1 0 Indoor
Video10 1 1 0 Indoor
Videol 1 1 1 3 Crowded scene

+ TP, FP denote true positive, and false positive, respectively.

Long-term(n) Short-term(n) Timeline
3
iz
’ (Owner Left
Owner Left
Ll
Object
' Abandoned

Owner Came

Abandoned Object

Static foreground Result of back tracing

Fig. 13. Detection results of the sequence Video2.

Long-term(n) Short-term(n) Timeline

i Owner Left
(Owner Left
:\ Object
Abandoned
Owner Came

Abandoned Object Static foreground Result of back tracing

Fig. 14. Detection results of the sequence Video3.

in a spatial-temporal window search. The overall computation
speed of our system is 29 fps.

D. Realistic Environment Detection in Our Own Sequence

In this study, we constructed the ABandoned Objects
DAtaset (ABODA) for further reliability evaluation.! ABODA
comprises 11 sequences labeled with various real-application
scenarios that are challenging for abandoned-object detection.
The situations include crowded scenes, marked changes in
lighting condition, night-time detection, as well as indoor
and outdoor environments. Figure 12 shows some sequences
from the ABODA dataset. Figure 12(a) shows a scenario
of a luggage-left event. The owner places his bag down
and converses with another person before leaving the scene
without his bag (also shown in Figure 15). Figure 12(d) shows
a night-time scene. The stationary people stops beside the

TABODA is publicly available for scientific studies and can be downloaded
from http://imp.iis.sinica.edu.tw/ABODA/index.html
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Fig. 15.

Ours(n+60) Ours(n+80) Ours(n+100)

Static foreground detection of our own dataset. Compare to the single-frame-based method [2], the proposed PFSM precisely localizes the static

foreground region of the left luggage, and effectively prevents false alarms generated by ghost and still people.

light rays, and shadows are thus produced behind them. In
this case, the shadows are similar to an abandoned object that
is “dropped” near the people, which is also a difficult situation
for abandoned-object detection algorithms.

The detection results in Table VII show that the overall
precision P and recall R are 66.67% and 100%, respectively.
The proposed method successfully recalls all of the abandoned
objects for both outdoor and indoor environments. Figure 13
and Figure 14 show the ABODA detection results.

In the experiments, few false alarms are raised, which were
primarily caused by sudden changes in illumination conditions
and crowded scenes. In general, our static foreground detection
is based on long- and short-term background modeling. When-
ever the light was suddenly turned off, the detection scene
became completely dark. Because of its fast learning rate, the
short-term background model adapted this condition quickly;
however, the long-term background model could not work
well, and it extracted several inaccurate foregrounds. These
inaccurate foregrounds retained a state S = 10 for a while;
consequently, the state transition of these foregrounds was
similar to that of the static foreground. Figure 16 shows that
this condition may have affected the FSM analysis, thereby

causing several false alarms. An intuitive solution would be
speeding up the learning rate of the long-term background
model when the illumination conditions change suddenly.
However, this method may be unreliable because both back-
ground models would treat the abandoned object as a back-
ground object. Therefore, addressing considerable changes
illumination remains a challenging issue in our framework.

The challenge of the 11th video is caused by the crowded
scene and partial occlusion problem of small objects. In this
video, there are a crowd of people waiting in line at the infor-
mation desk, and the videos were taken by a distant camera.
The crowded people (together with specular lightings) cause
unperfect background subtraction, as shown in Figure 17. The
small object size and partial occlusion also makes the owner
identification and tracking highly demanding. Hence, handling
more complex crowded scenes with intensively partial occlu-
sions still remains a challenging problem.

E. Performance Comparison With Different
Background Subtraction Methods

Background modeling plays an important role in the
proposed system. The performance of employing different
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Fig. 17.

background models in our framework are shown as follows.
We have implemented another popular background-modeling
method, Codebook [13], for performance comparison. Both
EGMM and Codebook gather a series of colors for each pixel
and then employ on-line mixture-distribution or clustering
to find the candidate colors for per-pixel model building.
Codebook has also the parameters controlling the background
updating speed. Hence, it can be used for generating long- and
short-term background models as well.

Unlike EGMM that treats the colors inside a spherical
region centered at a candidate color C as the background
colors, Codebook treats the colors inside a cylindrical region
centered at C as the background colors. Because the shadow
(or lighting) could cause a pixel’s color to shift toward (or far
away from) the origin in the RGB color space, Codebook
claims that a cylindrical region with its axis passing through
the origin can avoid generating false foreground pixels caused
by shadow or lighting.

However, a drawback of Codebook is that it tends to
generate fragmented foregrounds because neighbor pixels
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Long-term(278)

1, o
A 4
ad 1 .

Short-term(278) Short-term(300)

Short-term(590)

Results of background subtraction in the sequence Video8 with the scenario of sudden light switching. The digital camera converts to IR mode

Long-term(2200)

Short-term(1800) Short-term(2000) Short-term(2200)

Background subtraction results of the sequence Videoll with the scenario of crowded scene, which remains a challenge to our approach.

TABLE VIII
PERFORMANCE COMPARISON WITH DIFFERENT BACKGROUND
SUBTRACTION METHODS ON PETS2006

Background Model  Precision  Recall
EGMM 1.0 1.0
Codebook 0.60 0.43

are apt to be inconsistent in the background subtraction
results. We conduct the experiment on PETS2006 dataset for
performance comparison of EGMM and Codebook. We follow
the preliminary parameter evaluation as mentioned in
Section III.A, and select the best parameters for each
background model. Table VIII indicates that EGMM demon-
strates a more favorable performance than Codebook.
Figure 18 illustrates that the foreground regions extracted from
Codebook have many fragmented regions. The fragments are
getting increased when the learning rate is slower, particu-
larly for the long-term model. The noisy foreground regions
generated from Codebook make our method fail to infer the
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Performance comparison of background modeling with EGMM and Codebook. First row shows several sample frames in PETS2006.

Second and third rows show the long- and short-term model results of EGMM, respectively. Fourth and fifth rows show the long- and short-term model
results of Codebook, respectively.

static foreground pixels. Therefore, we recommend to employ
EGMM due to its better performance for dual-rate background
modeling.

IV. CONCLUSION

This paper presents a temporal consistency model combin-
ing a back-tracing algorithm for abandoned object detection.
Characteristics of the proposed approach are summarized as
follows:

1y

2)

3)

4)

The temporal consistency model is described by a
very simple FSM. It exploits the temporal transition
pattern generated by short- and long-term background
models, which can accurately identify static foreground
objects.

Our back-tracing algorithm iteratively tracks the luggage
owner by using spatial-temporal windows to efficiently
verify left-luggage events.

The experimental results show that our approach out-
performs previous approaches using the PETS2006 and
AVSS2007 datasets.

In addition, we constructed a novel publicly avail-
able dataset, entitled ABODA, comprising plentiful
abandoned-object detection situations to assist validating
the effectiveness of various approaches for this research
direction.

In the future, we plan to enhance our method for handling
more challenging situations such as sudden changes in lighting
and overly crowded scenes.
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