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Abstract: It is very challenging to accurately detect smoke from images because of large variances of smoke colour,
textures, shapes and occlusions. To improve performance, the authors combine dual threshold AdaBoost with
staircase searching technique to propose and implement an image smoke detection method. First, extended Haar-like
features and statistical features are efficiently extracted from integral images from both intensity and saturation
components of RGB images. Then, a dual threshold AdaBoost algorithm with a staircase searching technique is
proposed to classify the features of smoke for smoke detection. The staircase searching technique aims at keeping
consistency of training and classifying as far as possible. Finally, dynamic analysis is proposed to further validate the
existence of smoke. Experimental results demonstrate that the proposed system has a good robustness in terms of
early smoke detection and low false alarm rate, and it can detect smoke from videos with size of 320 × 240 in real time.
1 Introduction

Traditional paradigms for fire detection generally use very precise
sensors, which are based on particle sampling, temperature
sampling, relative humidity sampling and smoke analysis [1].
Those sensors are widely applied because of the low cost and
simplicity. Since those sensors require physical contact with
combustion products or environmental gas, the sensors must be
installed in close proximity of fires, otherwise fires cannot be
detected at all. Accordingly, traditional sensor-based fire detection
can only be applied for indoor environments. Fire detection in
video eliminates distance limitation and provides abundant visual
information about fire. It’s very promising that fire detection in
video is used in applications. Fire detection in video can be
classified into two categories that are video flame detection and
video smoke detection according to detected objects.

Yamagishi and Yamaguchi [2] presented a flame detection
algorithm to extract flame contours using colour information in
spatio-temporal domain. A fire detection system based on
grey-scale images applied in tunnels was implemented in [3]. A
flame detection technique based on video using a
Gaussian-smoothed colour histogram was proposed in [4]. Toreyin
et al. [5] utilised multiple features, such as motion, flicker, edge
blurring and colour for video flame detection. Temporal and
spatial wavelet transforms are performed to extract characteristics
of flicker and edge blurring. A video flame detection using
mixture Gaussian model to extract temporal features was proposed
by Yuan et al. [6]. Generally speaking, video flame detection
methods provide faster response and wider monitored scenes than
traditional sensor-based fire detection. However, robustness of
these methods is a great issue because of large variances of fire
texture, colour and shape, and disturbances of fired-colour objects.

Smoke detection provides earlier fire alarm than flame detection
because smoke usually appears before flame does. So far,
techniques on video smoke detection can be classified into three
categories [7, 8]. The first category is a histogram-based smoke
detection. In these techniques, histogram of smoke is constructed
to detect presence of smoke. Then, statistical measures, such as
mean and standard deviation, are calculated to determine smoke
probability. The second one is temporal techniques. Differences of
successive frames and wavelet transform of temporal pixel
intensities are used to extract time-varying features [9]. The third
one is rule-based techniques [10], that is, knowledge of fire is
encoded as rules to infer the presence of smoke.

Toreyin et al. [9] proposed a method to discriminate smoke and
non-smoke objects by fusing features of motion, flicker, edge
blurring and colour. A smoke video detection algorithm using
wavelets and support vector machine (SVM) was presented in
[11]. They calculated arithmetic mean, geometric mean, standard
deviation, skewness, kurtosis and entropy in each sub-band of
three-level wavelet transformed images. A smoke detection
method for forest fire detection was proposed in [12]. The method
includes four successive steps: temporal embedding of grey-levels,
fractal indexing of points, chaining points into a linked list, and
motion extraction from point sequences of the linked list. An
SVM-based method to detect steam in video was proposed in [13].
In their method, a statistical hidden Markov tree (HMT) model,
which is derived from coefficients of the dual-tree complex
wavelet transform (DT-CWT) in small local regions of image
sequences, is used to characterise steam texture pattern. In [14],
the effectiveness of commercial video fire detection systems for
small, cluttered spaces on navy ships was evaluated. Experiments
show that video fire detection systems can detect fires more
accurately and efficiently than traditional fire detection systems.
Yuan [15] proposed an accumulative motion model for video
smoke detection, in which integral image was used to fast estimate
the motion orientation of smoke. A video smoke detection using
both colour and motion features was proposed in [16]. Yuan [17]
utilised variants of LBPs to propose a video based smoke
detection with histogram sequences of LBP and LBPV pyramids.
Yuan [18] extracted shape-invariant features on multi-scale
partitions with AdaBoost for video smoke detection. Recently,
Saponara et al. [19] proposed to integrate standard smoke sensors
with the results of their smoke detection method, which was used
on passenger trains.

However, existing methods for video smoke detection still suffer
from high false alarm rates or low detection rates because of large
variances of smoke. It is still challenging to accurately detect
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Fig. 1 Extended Haar-like features used for image smoke detection
smoke in videos because of the following reasons: (i) smoke colour
varies largely and many non-smoke objects share the same colour
with smoke; (ii) smoke textures and shapes often change
irregularly; (iii) smoke often blurs images, resulting in unreliable
features extracted from these blurred images; and (iv) foreground
objects occlude smoke.

In this paper, we propose a robust real-time video smoke detection
system. This paper has three contributions to video smoke detection.
First, we combine extendedHaar-like features and statistical measures
together to propose a dual threshold AdaBoost algorithm, and these
features are extracted from both the intensity and saturation
components of original RGB images. The proposed method can
detect smoke in videos at real-time speed because all the features
are very simple and are able to be efficiently computed by integral
images. Second, a staircase searching technique is proposed to keep
consistency of training and detecting as far as possible, thus it
improves the performance of the proposed method. Last, we use
dynamic analysis to further validate the existence of smoke.

This paper is organised as follows. Section 2 describes fast feature
extraction by integral images. In Section 3, we describe a dual
threshold AdaBoost algorithm with a staircase searching technique in
details. Section 4 proposes dynamic analysis of possible smoke
regions detected by our method. Experimental results are
demonstrated in Section 5, followed by conclusion drawn in Section 6.
2 Extraction of smoke features

2.1 Haar-like features

Theoretical analysis has proved that any number of weak classifiers
with an error rate less than 50% can be combined to form an
ensemble classifier whose final error rate approaches that of an
optimal classifier. In [20], an AdaBoost algorithm was proposed to
train one ensemble classifier by iteratively changing weight
distribution of positive and negative samples. This method has been
demonstrated to be an effective machine learning method to
simultaneously select and combine relevant features from a large
feature set, for instance, face detection [21], fingerprint classification
[22] and so on. It is shown in [21] that the powerful feature selection
by the AdaBoost method makes it possible to use a very simple
feature extractor. In [21], Haar-like features are extracted and then
cascade AdaBoost method is employed for face detection. This is the
first paradigm to achieve real-time face detection with high
performance. Inspired by this idea, we decide to use the Haar-like
features to recognise smoke from images in real time.

A two-rectangle Haar-like feature is defined as difference of pixel
sums of two rectangular regions, which can be at any position and
scale within an original image. Haar-like features describe certain
characteristics in the underlying image, such as edges or changes in
texture. For instance, a 2-rectangle feature indicates the border
between a light region and a dark region. In [21], Viola and Jones
defined 3-rectangle and 4-rectangle features. However, our
experiments demonstrated that the Haar-like features defined in [21]
are not sufficient to represent detailed characteristics of smoke
because smoke regions have large variations in colour, shapes and
textures. In this work, some of extended Haar-like features proposed
by Lienhart et al. [23, 24] are employed for smoke feature extraction.

As shown inFig. 1, the features used in ourmethod are classified into
four categories: edge features, line features, diagonal line features and
centre-surround features. Each feature is assigned a unique type code.
For example, code 11 represents a 2-rectangle feature that indicates
the horizontal edge between a light region and a dark region. Each
rectangular Haar-like feature can be totally determined by five
parameters (c, x, y, w, h), that is, type code c, x and y coordinates of
the start point, width w and height h of the rectangle.
2.2 Feature computation by integral images

Viola and Jones [21] originally used a summed-area table in the form
of a matrix with the same size of the original image, which is called
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an integral image [23]. Actually, an integral image ii(x, y) is an
intermediate representation for an image i(x, y) and contains sum
of intensities located in up-left region of the original image, that is

ii(x, y) =
∑x
x′=0

∑y
y′=0

i(x′, y′) (1)

This allows us to compute sum of rectangular areas in the image i(x,
y), at any position or scale, using only four lookups

S(x1, y1, x2, y2) =
∑y2
y=y1

∑x2
x=x1

i(x, y) = ii(x1, y1)

+ ii(x2, y2)− ii(x1, y2)− ii(x2, y1) (2)

According to (2), the sum of a rectangle with bottom left point (x1,
y1) and top right point (x2, y2) is computed using only four lookups.
Each Haar-like feature may need more than four lookups, depending
on how it was defined. For example, a 2-rectangle feature requires
only six lookups, 3-rectangle features need eight lookups and
4-rectangle features need nine lookups.

It should be highlighted that several experiments show that
intensity images computed from RGB videos are insufficient for
smoke detection because of the extreme diversity of non-uniform
visual appearance of smoke. Generally, smoke behaves in totally
unpredictable ways because of its fluid characteristics. In some
cases, smoke flows rapidly and appears dense, so that most regions
are with high frequency components. In other cases, it may flow
slowly and appears sparsely, which results in most regions with
low frequency components. The experiments in subsequent
sections validate that extended set of Haar-like features over
intensity images have not sufficient discriminating capability. In
most dangerous fires, smoke emerges often in white or black
colours, which are high intensity and low intensity values both
with low saturation. Therefore low saturation of colour is an
important feature for smoke detection. To improve detection
performance, saturation of colour is extracted from RGB images of
videos to generate a saturation image. Then, the extended
Haar-like features are computed from both intensity and saturation
images. To unify feature codes, the code of a feature computed
from a saturation image is 1000 larger than the one from the
corresponding intensity image. For example, code 11 represents a
2-rectangle feature computed from an intensity image while code
1011 is a 2-rectangle feature from saturation images.

In addition, it is found that statistical measures of intensity and
saturation images are also very important features for smoke
detection. Means of intensity and saturation images within an
arbitrary rectangle, which are coded as 01 and 1001 respectively,
are efficiently computed by

E(i) = 1

(x2 − x1)(y2 − y1)
S(x1, y1, x2, y2) (3)

where S(x1, y1, x2, y2) is the sum of a rectangle described as (2).
IET Image Process., 2015, Vol. 9, Iss. 10, pp. 849–856
& The Institution of Engineering and Technology 2015



Fig. 2 Single-peak and two-peak feature distributions

a p = 1
b p = −1
c θ1 < θ2
d θ1≥ θ2
According to statistics theory, variance can be computed by the
following equation

s2 = E(i2)− E(i) · E(i) (4)

where E(i) is the mean of image i(x, y) in a rectangle with bottom left
point (x1, y1) and top right point (x2, y2). In order to efficiently
compute variance, another integral image ii2(x, y) is constructed by
computing the sum of squared values of pixel intensity with height
x and width y, defined as the following equation

ii2(x, y) =
∑x
x′=0

∑y
y′=0

i2(x′, y′) (5)

Then, E(i2) can be quickly computed by the following equation

E(i2) = 1

(x2 − x1)(y2 − y1)
[ii2(x1, y1)

+ ii2(x2, y2)− ii2(x1, y2)− ii2(x2, y1)] (6)

Accordingly, variances of intensity and saturation images within an
arbitrary rectangle are quickly obtained via (4), which are coded as
02 and 1002, respectively. It is seen that the variance of a
rectangle is computed using only eight lookups, that is, four
lookups in the integral image ii(x, y) and four lookups in the
squared integral image ii2(x, y). Now, 18 types of features are
extracted using extended Haar features and statistical measures for
smoke detection. Codes of the 18 feature types are set to 01, 02,
11, 12, 21, 22, 31, 41, 43, 1001, 1002, 1011, 1012, 1021, 1022,
1031, 1041 and 1043, respectively.
3 Dual threshold AdaBoost with staircase
searching

3.1 Single threshold AdaBoost

An AdaBoost classifier is normally used to solve the following three
issues in one boosting procedure: (i) selecting discriminative features
from a large redundant feature set, (ii) constructing a weak classifier
for each selected feature and (iii) boosting all weak classifiers into a
stronger classifier. For each feature, a weak classifier finds an optimal
threshold classification function, such that the minimum number of
samples is mis-classified. A weak classifier h(x, f, p, θ) consists of
a sample x, a feature f, a threshold θ and a polarity p that indicates
the direction of an inequality, defined as the following equation

h(x, f , p, u) = 1 if pf , pu
0 else

{
(7)

For a binary problem of smoke and non-smoke, a set of N labelled
training samples is given as (x1, y1), …, (xN, yN), where yi = 1 for
smoke and yi = 0 for non-smoke. In fact, each sample xi is
normalised to a 24 × 24 image in our implementation. A feature f
Fig. 3 Searching of two optimal thresholds θ1 and θ2
a θ1 < θ2
b θ1≥ θ2
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is defined as one of 14 types of extended Haar features as shown
in Fig. 1, and 4 types of means and variances of a rectangle.
Weights {w1, …, wN} assigned to each of training samples are
used to determine training errors. The details of the standard
AdaBoost algorithm can be found in [21]. To distinguish between
the dual threshold AdaBoost algorithm described in Section 3.2
and the standard AdaBoost algorithm, the standard AdaBoost
algorithm is called a single threshold AdaBoost algorithm because
a single threshold is used.
3.2 Dual threshold AdaBoost

The single threshold AdaBoost is suitable for positive and negative
samples with single-peak distributions, as shown in Figs. 2a and b.
However, there is usually black smoke or white smoke, resulting in
multi-peak distributions as shown in Figs. 2c and d, and accordingly,
a dual threshold AdaBoost algorithm, similar to [25], is adopted to
improve training performance.

Following (7), the polarity p is replaced with another threshold θ2,
and its original threshold θ is retained and denoted by θ1. So the dual
threshold AdaBoost algorithm has two thresholds, θ1 and θ2, as
shown in Figs. 2c and d. The number of parameters for the dual
threshold AdaBoost is the same as that of the single threshold
AdaBoost algorithm. First, consider the situation, where θ1 < θ2, as
shown in Fig. 3a. The method in [21] is adopted to search the two
thresholds. For each feature, samples are sorted in ascending order
based on the feature values. Then, four sums are maintained and
evaluated for each element in the sorted list, that is, total sum of
all positive sample weights T+, total sum of all negative sample
weights T−, sum of positive weights with feature values less than
ones of current sample S+ and sum of negative weights with
feature values less than ones of current sample S−. As shown in
Fig. 3a, the misclassified rate of positive samples is the sum of
positive weights between θ1 and θ2, and the misclassified rate of
851



Fig. 4 Pseudo code of the dual threshold AdaBoost algorithm
negative samples is equal to the sum of negative weights below θ1
and above θ2. Therefore, the misclassified rates of positive and
negative samples, denoted by e+a and e−a , are formulated as follows

e+a = S+(u2)− S+(u1) (8)

e−a = S−(u1)+ T− − S−(u2) (9)

The total error ea is equal to the sum of the positive and negative misclassified
rates

ea = e+a + e−a = e1 + e2 − T+ (10)

where

e1 = S−(u1)+ T+ − S+(u1) (11)

e2 = S+(u2)+ T− − S−(u2) (12)

The total error ea gets minimised when the errors e1 and e2 are minimal as T+

is constant. The two minimum errors e1 and e2 for that feature can be
computed in a single pass over the sorted list. θ1 and θ2 are the feature
852
values when the errors e1 and e2 are minimal as follows

u1 = argmin
f

(e1) (13)

u2 = argmin
f

(e2) (14)

Next, we consider another case, where θ1 < θ2, as shown in Fig. 3b. The total
error eb is computed as

eb = e+b + e−b = e1 + e2 − T− (15)

where

e+b = S+(u2)+ T+ − S+(u1) (16)

e−b = S−(u1)− S−(u2) (17)

Similarly, the total error eb can be minimised by obtaining minimal e1 and e2.
In summary, we define a new weak classifier h(x, f, θ1, θ2)

consisting of a sample x, a feature f, two thresholds θ1 and θ2, as
IET Image Process., 2015, Vol. 9, Iss. 10, pp. 849–856
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the following equation

h(x, f , u1, u2) =
1 if f , u1 or f ≥ u2
0 otherwise

if u1 , u2

{

1 if u2 ≤ f , u1
0 otherwise

ifu1 ≥ u2

{
⎧⎪⎪⎨
⎪⎪⎩

(18)

In fact, the inequations of θ1 < θ2 and θ1≥ θ2 in the dual threshold
AdaBoost are equivalent to the polarity p in the single threshold
AdaBoost, that is, p = sign(θ2−θ1), where sign(x) is a function that
returns 1 and −1 for x > 0 and x≤ 0, respectively. In other words,
the polarity p is hidden and replaced by the relationship of the two
thresholds θ1 and θ2. The dual threshold AdaBoost has two
parameters, θ1 and θ2, and the single threshold AdaBoost also has
two parameters, θ and p. Pseudo code of the dual threshold
AdaBoost algorithm is summarised in Fig. 4.

3.3 Staircase searching

A huge number of smoke features are extracted from many training
samples, so a very large feature pool is produced and huge memory
is required. To reduce memory consumption, each feature is usually
stored in an 8 or 16-bit integer. To efficiently search two thresholds
for a weak feature f, all the samples are sorted in ascending order of
the feature f, as shown in Fig. 5. Then, the thresholds θ1 and θ2 are
found by searching the minimal classification errors defined in (11)
and (12) for all features.

It is noted that there may be many samples corresponding to the
same feature values as shown in Fig. 5. The procedure of
minimisation is often implemented by changing thresholds θ1 and
θ2, so that it does not consider the equality of the feature values.
Therefore the position of a threshold found by the traditional
searching method may be located in the middle of the sorted
samples with the same feature value. As shown in Fig. 5, θ1 is
located at the n3th sample, and the traditional searching method
regards the n1th and n2th samples as one category and the n3th,
n4th and n5th samples as another category. It is highlighted that
the weak classifier with the threshold θ1 actually considers all
samples with the same features as the same category, that is, the
n1th, n2th, n3th, n4th and n5th samples are classified as the same
object, which results in inconsistent training and classifying.

Accordingly, a new searching method based on staircases is
proposed to keep such consistency. First, we sort the samples in an
ascending order of features and create a sorted sample list for each
feature. Then, we find all change points of features in the sorted
sample list. The change points denoted as s0, s1, …, sm are called
staircases, as shown in Fig. 5. Finally, we search the thresholds on
the space of staircases. Similarly, four sums based on staircases are
maintained and evaluated for each element in the sorted sample
list, that is, total sum of positive sample weights T +, total sum of
negative sample weights T −, sum of positive weights below
current staircase C+ and sum of negative weights below current
staircase C−. To find the thresholds on the space of staircases, we
replace S+ and S− in (8), (9), (11), (12), (16) and (17) with C+ and
C−, respectively. Thus, we can make the training and classifying
stages to be consistent and quickly find the thresholds.
Fig. 5 Staircase searching
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4 Dynamic analysis of candidate smoke

It is very challenging to accurately detect smoke from images since
smoke region has largely varying shapes, textures, colours and so on.
Large variances of within-class will lead to high false alarm rates that
are not allowed in real applications. However, it is also noted that a
short-time fire alarm, which lasts for less than a few seconds, can be
viewed as safety without any anxiety. On the basis of this idea, the
candidate smoke regions detected by AdaBoost are further
analysed in successive frames of video.

The detection rate RD and false positive rate RF can be properly
pre-specified from the receiver operating characteristic (ROC) curve
of the proposed dual threshold AdaBoost detector. If the probability
of smoke captured in a specified region is PS, the probability of
non-smoke is then 1−PS for the same region. To estimate the
probability of smoke detected by AdaBoost, a temporal window
with size NW consisting of a fixed number of frames is selected. As
shown in Fig. 6, a red rectangle denotes a possible smoke region
detected by the AdaBoost detector. The estimated probability of
detected smoke in a specified region is written as follows

PSmoke =
1

Nw

∑Nw−1

i=0

Ds(n− i) � RD · PS (19)

where

Ds(n) = 1 if smoke is detected
0 else

{
(20)

The estimated probability of false smoke detected by the AdaBoost
detector is given by

PNon =
1

Nw

∑Nw−1

i=0

Ds(n− i)[1− AS(n− i)] � RF · (1− PS) (21)

where

As(n) = 1 if there is actual smoke
0 else

{
(22)
Fig. 6 Dynamic estimation of smoke probability detected by the AdaBoost
detector

a Sequence of dense smoke
b Sequence of non-smoke
c Sequence containing sparse smoke
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It is noted that AS(n) is usually unknown. Equation (22) is given only
for theoretic analysis. A predetermined threshold T is properly
selected to meet the following equation

PNon , T , PSmoke (23)

The equation is approximately written as follows

RF · (1− PS) , T , RD · PS (24)

The final decision function can be written as

HD = smoke alarm if PSmoke . T
non-smoke else

{
(25)

If there is dense smoke in the specified region, the probability PS of
smoke is relatively high (usually above 0.8), and the probability of
non-smoke (1−PS) is low (usually below 0.2). If RD and RF are set
to 0.8 and 0.1, respectively, then RF*(1−PS) = 0.02 and RD*PS =
0.64. In our experiments, we select T = RD*0.5 = 0.4 s, which is
usually smaller than PSmoke computed by (19). This implies that
the number of smoke alarms decreases via index T. If there is no
smoke, the probability PS is low, usually below 0.2. Then PSmoke

is less than T and no alarm is produced.
In Fig. 6a, there is dense smoke in the specified region and the

window size NW is 8. The AdaBoost detector misclassifies two smoke
regions as non-smoke and one non-smoke region as smoke. PSmoke is
5/8 = 0.625, which is greater than T = 0.4, and an alarm is raised. In
Fig. 6b, there is no smoke in the specified region and two non-smoke
regions are misclassified. PSmoke is 2/8 = 0.25, which is less than T,
and no alarm is produced. If there is sparse smoke in the specified
region as shown in Fig. 6c, no alarm is made in this case because the
PSmoke (2/8) is less than T. Even if PSmoke is above T, our system also
does not make alarm as long as it lasts less than a few of seconds.
5 Experimental results

5.1 Data and implementation

We manually established two image databases containing smoke and
non-smoke images for training and testing the AdaBoost algorithm.
Some image samples were captured by ourselves, and others were
collected from the internet using searching engines. Each image is
cropped, resized and labelled as a positive or negative sample. The
training set lib1, containing 2201 smoke images and 8511 non-smoke
images, is used to select features by the AdaBoost algorithms. The
testing set lib2, including 2254 smoke images and 8363 non-smoke
images, is used for testing. The two image databases totally consist of
4455 positive images and 16 874 negative samples. In our
Fig. 7 ROC curves

a Extended Haar features with/without mean and variance
b Single and dual threshold AdaBoost algorithms
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implementation, the minimum searching window has the size of 24 ×
24, so the positive and negative images are also normalised to 24 ×
24 before feature extraction. The algorithm is implemented using
Visual C++, and tested on PC platforms.

5.2 Performance analysis

To evaluate the performance of the dual threshold AdaBoost algorithm,
the training set lib1 is used to train the single and dual threshold
AdaBoost algorithms. Experiments show that the training error with
dual thresholds is obviously lower than that with single threshold. In
other words, the dual threshold AdaBoost algorithm has better
convergence performance than the single threshold AdaBoost
algorithm so that we can use less features to achieve the same
classification accuracy by using the dual thresholdAdaBoost algorithm.

To validate the significance of extracted features, we train the dual
threshold AdaBoost algorithm using one feature pool F1 containing
extended Haar features and another feature pool F2 consisting of
extended Haar features as well as means and variances extracted
from the training set lib1, respectively. Performances of different
features on the testing set lib2 are evaluated by ROC curves as
shown in Fig. 7a. It is seen that the integration of extended Haar
features with statistical features can improve detection performances.

Using the feature pool F2, we train the single threshold AdaBoost
algorithm, and the dual threshold AdaBoost algorithm with or
without the staircase searching technique on the training set lib1.
Then the ROC curves of the three methods on the testing set lib2
are depicted in Fig. 7b. As we can see, the ROC curve of the dual
threshold AdaBoost method is approximately located in the lowest
position, and the ROC curve of the dual threshold AdaBoost
method with the staircase searching technique is nearest to upper
left corner of the chart among the three ROC curves. This implies
that the dual threshold AdaBoost method with the staircase
searching technique has the best generalisation among them
because the staircase searching technique can keep training and
classifying to be consistent.

It should be highlighted that an appropriate trade-off must be
made from the ROC curve depending on different applications. As
shown in Fig. 7b, when the false alarm rate is around 0.02, the
detection rates of the dual threshold AdaBoost algorithms with and
without the staircase searching techniques are about 0.95 and 0.8,
respectively. Low detection rate leads to high missing rate of fire
alarms, which are not allowed in applications, while increasing
detection rate yields high false alarm rate. So we propose a
dynamic analysis of motion to reduce false alarm rate.

5.3 Smoke detection in video

As the system is proposed for real-time video surveillance, we also
test our system in real videos. Fig. 8 visually illustrates
IET Image Process., 2015, Vol. 9, Iss. 10, pp. 849–856
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Fig. 8 Results for smoke and non-smoke videos

a Frame from a smoke video with detected smoke candidate regions
b Accumulated regions at the frame a
c Another frame from the smoke video with detected smoke candidate regions
d Accumulated regions at the frame c
e Frame from a non-smoke video with falsely detected regions
f Accumulated regions at the frame e
g Another frame from the non-smoke video with falsely detected regions
h Accumulated regions at the frame g

Table 2 False alarms on non-smoke videos

Videos Duration Number of false alarms Description

Our
method

Toreyin’s
method

LBP/LBPV
method

movie 5 895 0 0 0 waving
leaves

movie 6 155 0 0 1 car lights in
the night

movie 7 4536 0 4 1 basketball
yard

movie 8 1000 0 0 0 traffic
experimental results for a smoke video and a non-smoke video. First,
the candidate regions of smoke are detected by the dual threshold
AdaBoost algorithm. Then, dynamic analysis is used to eliminate
noisy alarms. As shown in Fig. 8, green rectangles indicate that
the probability of smoke regions is less than the predetermined
threshold T and yellow ones stand for the smoke probability
greater than the predetermined threshold T. If the total number of
candidate smoke regions in yellow is more than a pre-defined
threshold for several seconds, a fire alarm is raised. There may be
false regions detected in both smoke and non-smoke videos. For
example, the green rectangles in Figs. 8c, e and g denote
the candidate rectangles falsely detected as smoke regions by the
AdaBoost algorithm, but classified as non-smoke regions by
the dynamic analysis method. Of course, the dynamic analysis
method may sometime mis-classify actual smoke regions as
non-smoke regions, as shown in Fig. 8a. Experimental results
show that the probability of mis-classification of the dynamic
analysis method is very low, and it is a useful technique to
eliminate noisy alarm, thus it can reduce false alarm rates.
5.4 Comparisons

We compare the proposed algorithm with Toreyin’s algorithm [5]
and LBP/LBPV method [17]. Toreyin’s algorithm discriminates
Table 1 Smoke detection on smoke videos

Videos Duration Alarm at frame number Description

Our
method

Toreyin’s
method

LBP/
LBPV

method

movie 1 517 92 164 89 black smoke
movie 2 2886 87 216 94 white smoke

of cotton rope
fire

movie 3 1200 402 894 432 white smoke
of dry leaf

movie 4 900 77 68 99 white smoke

IET Image Process., 2015, Vol. 9, Iss. 10, pp. 849–856
& The Institution of Engineering and Technology 2015
smoke and non-smoke objects by fusing features of motion,
flicker, edge blurring and colour. LBP/LBPV method utilises
variants of LBPs to propose a video-based smoke detection with
histogram sequences of LBP and LBPV pyramids. We used four
fire smoke videos and four non-smoke videos, two of which are
downloaded from http://www.signal.ee.bilkent.edu.tr/VisiFire/
Demo/SampleClips.html and six of which were captured by
ourselves, respectively. Our training and testing image databases,
and videos can be downloaded from http://www.staff.ustc.edu.cn/
~yfn/vsd.html. The top row of Fig. 9 illustrates snapshots of four
smoke video and the bottom row shows four non-smoke videos.

As shown in Table 1, our method provides earlier fire alarms than
Toreyin’s method for Movies 1–3, but our method is a little later to
give a fire alarm than Toreyin’s method for Movies 4. The proposed
method raised earlier fire alarms than LBP/LBPV method for Movies
2–4. However, it later gives alarms than LBP/LBPV method for
Movies 1. It is seen from Table 2 that our method has generally
fewer false alarms than Toreyin’s method and LBP/LBPV method
for Movies 5–8.

We conducted experiments for videos on a PC that is equipped with
an AMD Phenom(tm) II X4 955 3.2 GHz Processor, and 8G memory.
The sizes of all the videos are 320 × 240. The processing time for a
frame is less than 40 ms. In other words, our method can process
videos with size of 320 × 240 at above 25 frames per seconds. In
the future, we need to further optimise our method to improve its
processing speed for low power equipment’s, such as mobile devices.
855



6 Conclusions

When smoke emerges, the quality of videos will greatly decrease,
resulting in inaccurate, unreliable features. Up to now, most of
video smoke detection methods suffer from high false alarm rates
and low detection rates. To enhance the robustness of image
smoke detection, we use extended Haar-like features and statistical
features extracted from both intensity and saturation images. As
the features are computed via integral images, the speed is very
fast. Then, a dual threshold AdaBoost algorithm with a staircase
searching technique is proposed for video smoke detection. This
method avoids inconsistency of training and classifying, and
greatly improves generalisation in comparison with the standard
AdaBoost algorithm. To reduce false alarm rates, the dynamic
analysis is proposed to further validate the existence of smoke by
computing the smoke possibility of candidate regions from
sequential images. Experiments show that our algorithm has a
good robustness for smoke detection at interactive frame rates.
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