
Forward-Backward Error: Automatic Detection of Tracking Failures

Zdenek Kalal
CVSSP, UK

z.kalal@surrey.ac.uk

Krystian Mikolajczyk
CVSSP, UK

k.mikolajczyk@surrey.ac.uk

Jiri Matas
CMP, Czech Republic

matas@cmp.felk.cvut.cz

Abstract

This paper proposes a novel method for tracking fail-
ure detection. The detection is based on the Forward-
Backward error, i.e. the tracking is performed forward
and backward in time and the discrepancies between
these two trajectories are measured. We demonstrate
that the proposed error enables reliable detection of
tracking failures and selection of reliable trajectories
in video sequences. We demonstrate that the approach
is complementary to commonly used normalized cross-
correlation (NCC). Based on the error, we propose a
novel object tracker called Median Flow. State-of-the-
art performance is achieved on challenging benchmark
video sequences which include non-rigid objects.

1. Introduction

Point tracking is a common computer vision task:
given a point location in time t, the goal is to estimate its
location in time t + 1. In practice, tracking often faces
with a problem where the points dramatically change
appearance or disappear from the camera view. Under
such conditions, tracking often results in failures. We
study the problem of failure detection and propose a
novel method that enables any tracker to self-evaluate
its reliability.

The proposed method is based on so called forward-
backward consistency assumption that correct tracking
should be independent of the direction of time-flow. Al-
gorithmically, the assumption is exploited as follows.
First, a tracker produces a trajectory by tracking the
point forward in time. Second, the point location in the
last frame initializes a validation trajectory. The vali-
dation trajectory is obtained by backward tracking from
the last frame to the first one. Third, the two trajectories
are compared and if they differ significantly, the for-
ward trajectory is considered as incorrect. Fig. 1 (top)
illustrates the method when tracking a point between
two images (basic trajectory). Point no. 1 is visible in
both images and the tracker is able to localize it cor-

It It+k

x̂t

xt

backward trajectory

forward trajectory

It+1

. . .

xt+1

forward-backward
error

xt+k

2

1

x̂t+1

Figure 1. The Forward-Backward error penalizes in-
consistent trajectories. Point 1 is visible in both im-
ages, tracker works consistently forward and back-
ward. Point 2 is occluded in the second image, for-
ward and backward trajectories are inconsistent.

rectly. Tracking this point forward or backward results
in identical trajectories. On the other hand, point no.
2 is not visible in the right image and the tracker lo-
calizes a different point. Tracking this point backward
ends in a different location then the original one. The
inconsistency can be easily identified and as we show
in the experimental section, it is highly correlated with
real tracking failures.

A commonly used approach to detect tracking fail-
ures is to describe the tracked point by a surrounding
patch R which is compared from time t to t + 1 us-
ing sum-of-square differences (SSD) [3, 9]. This differ-
ential error enables detection of failures caused by oc-
clusion or rapid movements, but does not detect slowly
drifting trajectories. The detection of a drift can be ap-
proached by defining an absolute error, such as a com-
parison between the current patch and affine warps of
the initial appearance [11]. This method is applicable
only to planar targets. Recently, a general method for
assessing the tracking performance was proposed [13],
which is based on a similar idea to the one explored in

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.675

2748

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.675

2760

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.675

2756

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.675

2756

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.675

2756

this paper. The method was designed for particle filters
with a static measurement model. Adaptation of their
method to point tracking was not suggested.

The rest of the paper is organized as follows: Sec. 2
formalizes a novel error measure, called Forward-
Backward error and compares it quantitatively with
SSD in Sec. 3. In Sec. 4 the approach will be ap-
plied to the feature point selection. Sec. 5 proposes
Median Flow tracker which outperforms state-of-the-art
approaches on benchmark sequences. The paper fin-
ishes with conclusions and future work.

2. Forward-Backward Error

This section defines the Forward-Backward (FB) er-
ror of feature point trajectories, see Fig. 1 (bottom) for
illustration. Let S = (It, It+1..., It+k) be an image
sequence and xt be a point location in time t. Us-
ing an arbitrary tracker, the point xt is tracked for-
ward for k steps. The resulting trajectory is T k

f =
(xt,xt+1, ...,xt+k), where f stands for forward and
k indicates the length. Our goal is to estimate the er-
ror (reliability) of trajectory T k

f given the image se-
quence S. For this purpose, the validation trajectory is
first constructed. Point xt+k is tracked backward up to
the first frame and produces T k

b = (x̂t, x̂t+1, ..., x̂t+k),
where x̂t+k = xt+k. The Forward-Backward error is
defined as the distance between these two trajectories:
FB(T k

f |S) = distance(T k
f , T

k
b). Various distances can

be defined for the trajectory comparison. For the sake
of simplicity, we use the Euclidean distance between
the initial point and the end point of the validation tra-
jectory, distance(T k

f , T
k
b) = ||xt − x̂t||.

The main advantage of the proposed FB error is that
it can be applied to a range of trackers and is easy to
implement. Trackers typically fail if the data violate
the assumptions. For instance when the motion of the
target is faster than expected. In that case, the tracker
produces a trajectory which is to some extent random.
Tracking backward produces yet another random trajec-
tory. These trajectories are likely to be different. Re-
cently, a novel tracking algorithm [12] was proposed
that exploits the time-reversibility directly in its predic-
tions. Therefore, the forward-backward trajectories are
consistent by definition. In this case the FB error can
not be applied.

3. Detection of Tracking Failures

The ability of the FB error to identify correct track-
ing was quantitatively evaluated on synthetic data. One
hundred images of natural scenes was warped by ran-
dom affine transformations and added with Gaussian
noise. A set of points was initialized on a regular grid

10
-3

10
-2

10
-1

1px 10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1.0

Forward-Backward Error (px)
Recall

Precision

0 0.2 0.4 0.6 0.8 1

0.7

1.0

Recall

P
re

c
is

io
n

Recall = 95%
Precision = 96%

0.8

0.9

Forward-Backward Error
SSD

Figure 2. (top) Thresholding the Forward-Backward
error enables to identify correctly tracked points.
(bottom) Precision/recall characteristics of a classi-
fier based on FB and SSD. FB is significantly better
than SSD for the majority of working points.

(with 5 pixel interval) in the original images and pro-
jected to the distorted images to create the ground truth
trajectories. Displacements of the points between the
original and warped images were estimated by Lucas-
Kanade tracker [8, 11]. Displacements that ended up
closer then 2 pixels from the ground truth were labeled
as inliers (65%). The trajectories were then evaluated
by an error (FB, SSD) and classified as inliers if the
error was smaller than a threshold. The results were
compared to the ground truth and the precision/recall
statistics were computed.

Fig. 2 (top) shows the resulting performance of FB
as a function of the threshold. Notice the threshold
of 1 pixel (1px) where the recall is of 95% and preci-
sion of 96%. This high performance demonstrates that
the FB error detects correct trajectories by threshold-
ing. The bottom figure shows the corresponding pre-
cision/recall curves for FB in comparison to standard
SSD. FB is significantly better than SSD for majority
of working points. SSD was unable to detect inliers for
small thresholds, its precision starts below 70% (ran-
dom guessing would start at 65%). We have carried out
another experiments where the regular grid of features
was replaced by “FAST” feature point detector [10] and
consistent observations were made.

4. Trajectory Selection from Video

Tracking performance is sensitive to the initializa-
tion and therefore the selection of points to track is im-
portant. The selection is typically done in the first frame
by detecting keypoints [11, 10] that are easy to track.
The problem is that even these points can become oc-

27492761275727572757

Forward-Backward Error Map

C

A

B

D E

Figure 3. Point selection from video. (left) The first
frame from the sequence PEDESTRIAN 1. The red
dots indicate 1% of points with most reliable trajec-
tories. (right) Error Map of the same sequence. The
pixel intensity is inversely proportional to the trajec-
tory reliability.

cluded, disappear or change their appearance later on in
the sequence leading the tracker to a failure. Therefore,
if possible, the selection mechanism should incorporate
the information from the whole video.

Here we propose a brute force selection mechanism
based on the FB error: 1) track every pixel from the
first frame through the whole sequence, 2) evaluate the
trajectories by the FB error, 3) assign each pixel the er-
ror of its trajectory. The resulting image is called Er-
ror Map and shows which points are tracked reliably
throughout the whole sequence. The selection of the
points is done by thresholding.

The Error Map has been constructed for the sequence
PEDESTRIAN 1, used in [14], and the result is shown
in Fig. 3. The left panel shows the first frame of the
sequence. The red points indicate 1% of the most reli-
able pixels. The right panel shows the Error Map. Dark
colors indicate low FB error: tree shadow (A), upper
bodies of two pedestrians (B). Any point selected from
these areas is tracked accurately in the whole sequence.
Brighter colors areas which are difficult or impossible
to track. These areas may become occluded (C), disap-
pear from the camera view (D) or lack enough structural
information (E). This experiment demonstrates that the
FB error can be used to select feature points for which
the tracking is reliable in the whole video sequence.
This is in contrast to standard feature selection meth-
ods [11, 10] which are based on the information from a
single image.

5. Object Tracking by Median Flow

Previous sections were discussing an approach for
tracking of points which were considered as indepen-
dent. However, in natural videos, the points are rarely
independent but are parts of bigger units which move
together. These units will be called objects (cars, pedes-
trians, human face, etc.). This section exploits a point
tracking algorithm and the proposed FB error measure,

Track
points

Estimate
tracking error

Update
bounding box

Initialize
points
to grid

Filter out
outliers

t t+1

Figure 4. The Median Flow tracker accepts a bound-
ing box and a pair of images. A number of points
within the bounding box are tracked, their error is
estimated and the outliers are filtered out. The re-
maining estimate the bounding box motion.

and designs a novel robust object tracker with superior
performance.

A block diagram of the proposed tracker is shown in
Fig. 4. The tracker accepts a pair of images It, It+1 and
a bounding box βt and outputs the bounding box βt+1.
A set of points is initialized on a rectangular grid within
the bounding box βt. These points are then tracked by
Lucas-Kanade tracker which generates a sparse motion
flow between It and It+1. The quality of the point pre-
dictions is then estimated and each point is assigned
an error (e.g. FB, NCC, SSD). 50% of the worst pre-
dictions are filtered out. The remaining predictions are
used to estimate the displacement of the whole bound-
ing box. We refer to this tracker as Median Flow.

Estimation of the bounding box displacement from
the remaining points is performed using median over
each spatial dimension. Scale change is computed as
follows: for each pair of points, a ratio between current
point distance and previous point distance is computed;
bounding box scale change is defined as the median
over these ratios. An implicit assumption of the point-
based representation is that the object is composed of
small rigid patches. Parts of the objects that do not sat-
isfy this assumption (object boundary, flexible parts) are
not considered in the voting since they are rejected by
the error measure.

A number of variants of the Median Flow tracker
was tested. The baseline tracker T0, also used in [5],
does not evaluate the point tracking error and estimates
the bounding box displacement based on all points.
Trackers TFB , TNCC , TSSD estimate the error by FB,
NCC and SSD. 50% of the outliers are filtered out.
Tracker TFB+NCC combines FB and NCC, each er-
ror independently filters out 50% of outliers. These
trackers were compared with the state-of-the-art ap-

27502762275827582758

0

1

frame number, length 140

tr
a
c
k
e
r

o
v
e
rl
a
p
 w

it
h
 g

ro
u
n
d
 t
ru

th

all

FB

NCC

SSD

FB+NCC

Figure 5. Sequence PEDESTRIAN 1: Performance
comparison of various error measures measures.

Sequence Frames [7] [4] [1] [2] T0 TFB TNCC TSSD TFB+NCC

David 761 17 n/a 94 135 93 761 144 28 761
Jumping 313 75 313 44 313 36 76 87 79 170
Pedestrian 1 140 11 6 22 101 15 37 40 12 140
Pedestrian 2 338 33 8 118 37 97 97 97 97 97
Pedestrian 3 184 50 5 53 49 52 52 52 52 52
Car 945 163 n/a 10 45 248 510 394 353 510
Best n/a 0 1 2 1 0 2 0 0 3

Table 1. Comparison with state-of-the-art ap-
proaches in terms of the number of correctly tracked
frames.

proaches [7, 4, 1, 2] on 6 video sequences from [14].
The objects were manually initialized in the first frame
and tracked up to the end of the sequence. The trajec-
tory was considered correct if the bounding box overlap
with ground truth was larger than 50%. Performance
was assessed as the maximal frame number up to which
the tracker was correct.

Fig. 5 demonstrate the influence of the error measure
on performance of the Median Flow tracker. The base-
line T0 method as well as TSSD perform the worst. This
supports our claims made earlier that SSD is less re-
liable in identifying correct point trajectories. TFB and
TNCC perform similarly and are able to follow the target
for twice as long than the baseline method. TFB+NCC

clearly dominates and is able to track the target through-
out entire sequence. This shows that FB is independent
to NCC and their combination leads to significant im-
provement in tracking. Table 1 shows the quantitative
results for all sequences. The last row shows the number
of times the particular algorithm performed best. The
best results obtained the Median Flow based on a com-
bination of FB and NCC error. This tracker was able to
score best three times and defines new state-of-the-art
performance on these sequences.

6. Conclusions

This paper proposed a novel measure, Forward-
Backward error, that estimates reliability of a trajec-
tory. A validation trajectory is constructed by backward
tracking and compared to the trajectory in question. The
implementation only involves applying the same track-
ing algorithm on a reversed sequence of images. The
measure was applied to Lucas-Kanade tracker and its
benefits and complementarity to SSD and NCC were

shown. Based on the proposed Forward-Backward error
we designed a novel tracker, called Median Flow, that
achieved state-of-the-art performance on several bench-
mark sequences. The FB error can also be implemented
as a constraint and used in a novel tracking framework
introduced in [6].

Acknowledgment. This research was supported by UK EP-
SRC EP/F0034 20/1 and the BBC R&D grants (ZK, KM) and
by EC project ICT-215078 DIPLECS (JM).

References

[1] S. Avidan. Ensemble tracking. PAMI, 29(2):261–271,
2007.

[2] B. Babenko, M.-H. Yang, and S. Belongie. Visual track-
ing with online multiple instance learning. CVPR, 2009.

[3] J. Bouguet. Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the algorithm.
Technical report, OpenCV Document, Intel Micropro-
cessor Research Labs, 1999.

[4] R. Collins, Y. Liu, and M. Leordeanu. Online selection
of discriminative tracking features. PAMI, 27(10):1631–
1643, 2005.

[5] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learn-
ing of robust object detectors during unstable tracking.
OLCV, 2009.

[6] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learn-
ing: Bootstrapping Binary Classifiers by Structural Con-
straints. CVPR, 2010.

[7] J. Lim, D. Ross, R. Lin, and M. Yang. Incremental learn-
ing for visual tracking. NIPS, 2005.

[8] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. IJCAI,
81:674–679, 1981.

[9] K. Nickels and S. Hutchinson. Estimating uncertainty in
SSD-based feature tracking. IVC, 20(1):47–58, 2002.

[10] E. Rosten and T. Drummond. Machine learning for high-
speed corner detection. ECCV, May 2006.

[11] J. Shi and C. Tomasi. Good features to track. CVPR,
1994.

[12] H. Wu, R. Chellappa, A. Sankaranarayanan, and
S. Zhou. Robust visual tracking using the time-
reversibility constraint. ICCV, 2007.

[13] H. Wu, A. C. Sankaranarayanan, and R. Chellappa. In
situ evaluation of tracking algorithms using time re-
versed chains. CVPR, 2007.

[14] Q. Yu, T. Dinh, and G. Medioni. Online tracking and
reacquisition using co-trained generative and discrimi-
native trackers. ECCV, 2008.

27512763275927592759

