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Abstract—In this paper, we study the problem of detecting
sudden pedestrian crossings to assist drivers in avoiding accidents.
This application has two major requirements: to detect crossing
pedestrians as early as possible just as they enter the view of
the car-mounted camera and to maintain a false alarm rate as
low as possible for practical purposes. Although many current
sliding-window-based approaches using various features and clas-
sification algorithms have been proposed for image-/video-based
pedestrian detection, their performance in terms of accuracy and
processing speed falls far short of practical application require-
ments. To address this problem, we propose a three-level coarse-
to-fine video-based framework that detects partially visible
pedestrians just as they enter the camera view, with low false
alarm rate and high speed. The framework is tested on a new
collection of high-resolution videos captured from a moving ve-
hicle and yields a performance better than that of state-of-the-art
pedestrian detection while running at a frame rate of 55 fps.

Index Terms—Coarse to fine, pedestrian detection, perfor-
mance evaluation, spatiotemporal refinement, sudden pedestrian
crossing.

I. INTRODUCTION

HUMAN ACTION and activity detection/analysis [13],
[23] has attracted much attention in computer vision

because its of wide-range applications, including surveillance
[12], [15], [24], [29], [33], robotics [3], content-based im-
age/video retrieval, video annotation, assisted living, intelligent
vehicles [32], and advanced user interfaces [11], [20]. In this
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Fig. 1. Flowchart of the proposed three-level framework.

paper, we address a particular problem in this area that can have
a significant impact on people’s lives, namely, the detection
of sudden pedestrian crossings to assist drivers in accident
avoidance. Our work is motivated by two factors. One is that
the proposed problem has great social meaning and application
value. According to the traffic safety data from the National
Highway Traffic Safety Administration [26] and the EU [11],
many people are killed/injured each year in pedestrian–motor
collisions; most of which occur when pedestrians attempt a road
crossing at nonintersections. Second, the proposed problem has
special requirements that make it different from existing related
research. Drivers must be alerted to crossing pedestrians as
early as possible for evasive maneuvers to be most effective.
For this, crossing pedestrians should be identified even before
they come into full view. The need for a combination of high
processing speed, detection of partially visible pedestrians as
they enter the scene, rejection of static or exiting pedestrians,
and handling of unconstrained camera motion distinguishes this
application from related work on event/action detection, generic
(image/video based) pedestrian detection [7], and even current
methods in intelligent vehicle systems [10], [11].

In this paper, we address the aforementioned issues with a
proposed three-level coarse-to-fine framework, shown in Fig. 1.
A natural approach to this problem is to locate pedestrians and
then determine from motion analysis whether he/she is entering
the road scene. In the first stage, we perform analysis at a
local level by employing sparse sliding window sampling with a
novel local binary pattern (LBP) difference-based motion filter
to rapidly identify image regions containing possible pedestrian
motion. Windows pass the first stage and then undergo further
verification at the frame level in the second stage using a pair of
generic pedestrian detectors trained with half-sized pedestrian
samples. Lastly, in the third stage, appearance and motion-
based spatiotemporal refinement is computed at the video level
to pinpoint pedestrian locations and to reduce false alarms,
including static and exiting pedestrians. This coarse-to-fine ap-
proach, together with cascaded classifiers and a sparse sampling
strategy, is shown to yield high accuracy while running at real-
time frame rates.

1083-4419/$26.00 © 2011 IEEE
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The proposed framework is tested on a newly collected data
set consisting of high-resolution videos of sudden pedestrian
crossings captured from a moving vehicle. Unlike data sets
used for general onboard pedestrian detection [6], [7], [31],
the examined application requires high-resolution data since it
generally deals with pedestrians with an otherwise small image
footprint, e.g., side-views of partially visible pedestrians and
young children who may rush out onto a street unaware of
oncoming traffic. With the rapidly decreasing costs of high-
resolution cameras, we believe that they will be the standard
in intelligent vehicle systems. In addition to the new data set,
we propose novel evaluation criteria that are also targeted to
our application.

In summary, the major contributions of this paper are as fol-
lows: the first systematic study on sudden pedestrian crossings;
the development of a real-time algorithm; the collection of a
new data set suitable for this problem; and the new evalua-
tion criteria. With this approach, we obtained a performance
of 73% true positive detection with 0.01 false positives per
frame, which is an improvement over state-of-the-art image-
based pedestrian detection techniques [6], [7], even though our
method processes only partially visible pedestrians and pro-
vides real-time performance. The processing speed of our sys-
tem is 55 fps, which is both suitable for practical applications
in urban areas without high vehicle speeds and considerably
faster than computing only dense histogram of oriented gradient
(HOG) features alone (0.75 fps).

II. PREVIOUS WORK ON IMAGE-/VIDEO-BASED

PEDESTRIAN DETECTION

Research on pedestrian detection can be roughly categorized
into two types according to the data source, i.e., image based
and video based. Detecting pedestrians in images is a challeng-
ing task that has attracted much attention in computer vision
since only limited static appearance information can be used. In
contrast, video-based detection benefits from additional infor-
mation in the forms of motion data and depth data, which can
be used to efficiently infer regions of interest (ROIs) and can
be used together with appearance features to increase classifi-
cation accuracy. However, both of these approaches share the
same general framework, including candidate selection, feature
representation, classification, and final decision. Of course,
some preprocessing (e.g., image smoothing or enhancement
and video stabilization) and postprocessing (e.g., tracking) are
essential in achieving high performance. Similar to other ob-
ject detection problems, features (representation, selection, and
dimensionality reduction) and classification algorithm highly
influence detection precision and play important roles in the
whole system. Candidate selection is usually used to balance
speed and accuracy, i.e., by quickly filtering out most of the
nonpedestrian areas. The final decision is made to further im-
prove precision by removing redundant detections. We review
related work from these four aspects in the following sections.

A. Candidates

In the literature, sliding-window-based approaches have been
shown to outperform others and have become the predominant

method at present [28]. Sliding windows at various scales and
locations are first examined to detect ROIs based on certain
features, which may be global [1], [11], [17], [19], [20], [22],
[25] or local [2], [21] and single [4], [27] or multiple [30]. Then,
single or multiple classifiers (e.g., support vector machines
(SVMs) and variants of boosting algorithms) are used to judge
whether the sliding windows in ROIs bound a person or not.

Since the basic sliding window method performs an ex-
haustive search, it may obtain a higher accuracy; however, the
speed is comparatively low. To elevate speed, some candidate
selection methods are used to roughly locate the ROIs that have
a higher possibility of containing pedestrians. For example,
Gavrila et al. proposed a chamfer system based on edge tem-
plate matching to locate candidate regions before neural net-
work classification [10]. Huang et al. used stereo segmentation
to obtain the candidate region [38]. In the widely used OpenCV
toolbox, Canny pruning is used as the candidate selection
module for Haar-like feature-based pedestrian detection [39].
Furthermore, tracking previous detection results can also be
treated as a form of candidate selection.

B. Features

Various features have been used for pedestrian detection,
which can be roughly categorized into appearance/static fea-
tures and motion features. For image-based methods, only
appearance features can be used, while motion features usually
provide more information for video-based pedestrian detection.
For example, Viola et al. [27] used Haar-like features to rep-
resent both appearance and motion and trained a cascaded Ad-
aboost classifier to detect walking pedestrians. Dalal et al. [5]
extracted oriented histograms of flow from two sequential
frames to serve as motion features, which are used together
with HOG-based appearance features to improve detection
accuracy. However, motion information is difficult to use since
it also brings in more noise, especially in unconstrained videos;
therefore, some existing systems use only static information to
detect pedestrians in videos [28], [43].

We can also categorize existing pedestrian detection systems
according to the number of feature types adopted. Single fea-
tures such as edges [11], shapelets [25], histograms of image
patches (e.g., LBP and HOG) [1], [4], [17], [19], local repre-
sentative fields [7], [20], wavelet coefficients [22], and Haar-
like features [27] are widely used for pedestrian detection and
general object detection in the literature. Many methods have
also been proposed to combine several types of features. For
example, different kinds of histogram features can be directly
joined to form new features [28]. Different features can be used
to train several classifiers individually, and a final decision is
made by majority voting or in a cascaded manner [5]. Different
features can be selected and integrated by boosting [30], [43],
and a single/cascaded classifier can be obtained.

Moreover, features can be categorized into global ones and
local ones. Global features are extracted directly from each
sliding window or sample image, while local features are
extracted by dividing a sliding window into different subregions
[40], where each region can be taken as a unit from which to
extract one or more kinds of features [2], [21].
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C. Classification

Currently, for classification algorithms, supervised learning
methods are the dominant approaches. A classifier is trained
offline using completely labeled training data, where sliding
windows which bound a person form positive samples, while
the others are negative samples. Typically, SVMs, especially
linear SVMs (LinSVM) and variants of boosting algorithms,
are used because of their high classification accuracy and effi-
ciency. Bootstrapping is also frequently employed since it has
been empirically proven to improve the generalization capacity
of classifiers [20], [30]. In recent years, active learning [41] and
multiple instance learning [42] have been introduced as suitable
techniques for pedestrian detection.

Features and classifiers may have some frequently used
combinations according to their characteristics. Usually, high-
dimensional features are combined with boosting classifiers,
which can identify a small number of optimal features during
classifier training, while low-dimensional features are com-
bined with an effective linear SVM classifier. For further details
on features and classification algorithms for pedestrian detec-
tion, readers are referred to a recent survey on this topic [7].

D. Decision

Final results are typically determined after employing non-
maximal suppression (NMS) to merge overlapping windows,
which can greatly reduce false alarms at the image level. To
further improve system performance at the video level, e.g.,
with greater robustness to camera motion, tracking methods
such as Kalman filtering and mean shift tracking [34]–[37]
have been used in many vision systems. Moreover, tracking
by detection has achieved higher accuracy recently. For ex-
ample, overlapping spatiotemporal windows detected in each
frame have been merged in order to reduce false alarms at the
trajectory level [7]. The final decision is made by evaluating
each trajectory; therefore, tracking accuracy is heavily reliant
on image-based detection.

E. Differences of Our Work

Our problem of detecting sudden pedestrian crossings differs
from generic image-/video-based pedestrian detection in two
significant respects. One is the necessity of fast processing
to alert the driver as early as possible. Although complex
appearance and motion features from densely sampled sliding
windows have often been used to guarantee a high detection
rate, this leads to very low detection speeds that are unsuitable
for our real-time application. We observe that, for the purpose
of alerting drivers, a pedestrian need not be detected in every
frame in which he/she appears; therefore, we propose a sparse
sliding window scanning strategy to speed up the detection
process. In addition, our system focuses on partially visible
pedestrians before they have even entered into full view of the
camera.

Another difference from previous works is that our system
aims to alert drivers only to sudden pedestrian crossings that
may take the driver by surprise. It is in these cases that a warn-
ing alarm is most critical. We disregard static pedestrians and
pedestrians that cross at a far distance from the camera, which

Fig. 2. Notation for a pedestrian crossing event.

drivers should be able to see with plenty of time to react. Our
system considers only pedestrians that exhibit greater motion
than the background over the course of several frames. Toward
this end, we propose a new LBP difference-based motion filter
to discard regions that lack significant motion in order to greatly
speed up detection without decreasing the detection rate. By
considering only pedestrians crossing near to the camera, we
can assume that the sudden pedestrian crossing events originate
at the sides of the camera view, which limits the area of
each video frame that needs to be examined. By substantially
reducing the search space in this manner, it is possible to
integrate various computationally expensive features without a
major sacrifice in processing speed.

III. DEFINITION OF PEDESTRIAN CROSSING EVENT

In this paper, a pedestrian crossing event is defined as a
spatiotemporal volume that encompasses a given range of
pedestrian visibility as he/she enters the camera view. To quan-
tify pedestrian visibility, we first define the pedestrian entering
ratio. As shown in Fig. 2, when a pedestrian enters the camera
view from the left side, the entering ratio α is defined as

α =
Xe − Xr

W
(1)

where Xe is the X-axis value of the right edge of the pedes-
trian’s bounding box, Xr is the X-axis value of a vertical
reference line, and W is the horizontal width of the bounding
box. In real applications of our system, the reference line is
taken as the left/right edge of each video frame. However, for
testing our framework, the reference line may be placed within
the frame so that the bounding box is completely visible and the
actual entering ratios are known for evaluation purposes. We
also define We = Xe − Xr as the entering width. We utilize
this arbitrary definition of entering ratio to more easily account
for variations in entering style, shown in Fig. 3.

Based on the definition of entering ratio α, the spatiotempo-
ral cubic of a pedestrian crossing event starts from a predefined
threshold αe and ends when the entering ratio reaches a certain
threshold αl.

IV. EFFICIENT SPATIOTEMPORAL

COARSE-TO-FINE FRAMEWORK

To detect pedestrian crossing events, we propose a three-level
coarse-to-fine approach based on sliding windows. As shown
in Fig. 1, the levels are defined as the following: 1) sparse
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Fig. 3. Examples of various pedestrian entering styles. The first row illustrates
a pedestrian jumping into the camera view, the second row illustrates a strolling
entrance, and the third row exhibits running.

sliding window sampling with a motion filter based on a new
LBP difference feature at the local level; 2) coarse detection
and rough localization at the frame level; and 3) spatiotemporal
refinement and fine localization at the video level. Each of these
levels is described in the following sections.

A. Local Level

At the local level, we search for pedestrians using a bundle
of sliding windows at different scales. For efficient yet accurate
operation of sliding windows, we take advantage of three
properties of sudden pedestrian crossings. Since a crossing
pedestrian need not be detected in every frame of the event in
order to issue an alert to the driver, a sparse sliding window
scanning strategy is used to improve processing speed. In
addition to this, only sliding windows that contain significant
motion according to an LBP difference feature need to be
considered since crossing pedestrians must be moving. Third,
our system examines windows only at the left or right edges of
each frame, where sudden crossings of nearby pedestrians are
presumed to begin.

For sliding windows, typical image-based methods use fine
sampling of scales and shifts, and then merge the dense de-
tection results using NMS to obtain precise pedestrian loca-
tions. We refer to this as a fine-to-fine approach, which is
computationally slow and unsuitable for real-time onboard
detection with high-resolution images. For our application of
video-based detection of sudden pedestrian crossing events, we
instead employ a coarse-to-fine approach. At the local level, an
approximate location of a pedestrian is found using a coarse
sampling of window scales and shifts. Then, later at the video
level, the pedestrian position is refined. In our implementation,
we use sliding windows with sizes that range from 128 × 32 to
512 × 128, with a scaling factor of ρ = 1.25 and with shifts of
1/8 of the window height. The large window shifts are feasible
in our application since it is unnecessary to detect each frame
of a pedestrian as he/she is crossing, and vehicle motion often
introduces vertical displacements of pedestrians in different
frames.

In this paper, a new LBP [1], [28] difference feature is used
to detect regions with significant motion. For each frame, the

LBP8,1 transformation is performed on each pixel in the ROI
that covers all of the sliding windows, and then, the LBP
histogram of each of these windows is efficiently calculated
using integral images [27], which are computed concurrently
with the LBP transformation and is normalized by its L1-norm.
The histogram is subtracted from a cached LBP histogram of a
previous frame to obtain the LBP difference. If the magnitude
of the LBP difference in a sliding window is larger than a
threshold f , which is empirically set in our experiments, this
sliding window will be tagged for further processing, and the
cached LBP histogram of this sliding window is replaced by
the present one. The cached histogram is also replaced by the
current one if its corresponding window was not tagged in the
previous θf frames (six in our implementation).

For our method, the LBP difference-based motion filter has
several advantages over alternative motion filters. In contrast to
basic pixel-based frame subtraction, the LBP difference filter
is unaffected by illumination variation and some amount of
rotation. Moreover, compared with tracking or motion estima-
tion methods such as Kalman filtering and mean shift tracking,
which may fail or have very low accuracy when there is a large
sudden motion, this LBP filter can also handle fast motion.
At the same time, this method of sparse sampling does not
degrade the positive detection rate, as we will demonstrate in
Section VII-B.

B. Frame Level

The sliding windows that pass the motion filter are then
passed to a cascade of classifiers for coarse detection and
rough localization. First, a HOG+LinSVM [30] classifier is
used because HOG [4] and HOG-like [14], [17] features have
demonstrated great success in various object detection prob-
lems, especially in pedestrian detection. For HOG feature ex-
traction, the gradient of each pixel in the windows is computed,
and then, the gradient magnitude is inserted into one of the nine
histogram bins that span a 180◦ range. In these histograms, an
8 × 8 cell size is used, and 2 × 2 cells form a block. Each
block half overlaps each of its neighbors and is normalized
using the L2-norm. The final HOG vector is composed of all
normalized block histograms, with a total dimension of 1620
for the 128 × 32 sliding windows employed in our work. Since
the Y -axis shift of our sliding window sampling strategy is
exactly one block size, the computation of HOG features can
be expedited by saving and reusing the feature computation and
normalization among overlapping blocks.

Since HOG features represent only edge information, we
additionally utilize a texture feature to obtain lower false pos-
itive rates. As reported in [30], the combination of HOG and
Haar wavelets achieves its best performance with the help of
Adaboost and bootstrapping. However, since Haar wavelets are
densely sampled, they require much computation time. For
efficiency, we only use global Haar wavelet features with a
dimension of 128 [18]. The Haar wavelet classifier is cas-
caded after the HOG-based classifier for the following reasons:
1) concatenating the 1620-D HOG feature with the 128-D Haar
feature to form a new longer feature will make the Haar feature
insignificant due to its relatively much lower dimensionality,
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and 2) the 128-D Haar feature requires double the computation
of a 1620-D HOG, so it should come second for speed consid-
erations. For both the HOG and Haar wavelet classifiers, the
linear SVMs are implemented with the libLinear toolbox [9].

C. Video Level

For each sliding window that passes the coarse detection
at the frame level, its surrounding spatiotemporal volume is
analyzed for further refinement and fine localization. First,
spatial refinement is performed to merge sliding windows in
order to locate pedestrians more accurately. Then, temporal
refinement is done with respect to both appearance and motion
for greater elimination of false positives.

1) Spatial Refinement and Fine Localization: In this proce-
dure, overlapping positive windows from the frame level are
merged according to their overlap ratios, and then, a finely
sampled sliding window with the HOG-based linear SVM
classifier is used to recompute the pedestrian location. The
procedural details are described in the following.

1) Window merging with overlap ratio matrix: various NMS
methods have been proposed to reduce redundancy in
sliding-window-based detection. Our method performs
grouping of the overlapping positive windows and then
selects a single window from each group by using NMS.
The following steps are used.
a) From n windows [denoted as Wi(i = 1, 2, . . . , n)]

classified as positive at the frame level, an overlap
ratio matrix On×n is obtained, where O(i, j) denotes
the overlap ratio between the ith and jth windows.

b) Scan each row of On×n from top to bottom. For the
ith row, windows that overlap the ith window with
a ratio larger than a threshold ω = 0.5 are grouped
together, where the overlap ratio is computed by using
the “intersection-over-union” method [6], [7]. Once a
window is grouped, its row is ignored in the remainder
of the grouping procedure.

2) Location refinement with NMS: for a given window
group, location refinement is performed in a refinement
region with a new window size, as described in the
following.
a) New sliding window size: the new sliding window size

is set to the average window size in this group.
b) Refinement region: the minimum rectangle R that

encompasses all of the windows in the group is de-
termined and is then expanded vertically toward the
top and toward the bottom of the frame by 10% of its
height.

c) Location refinement: to compute the refined location, a
HOG-based linear SVM is applied to sliding windows
along the reference line, with shift steps of 1/128 of
the new window height. Each sliding window and its
decision value are added into the original group. The
window with the maximum decision value and mini-
mum area is selected as the representative window of
this group.

2) Temporal Refinement: In this procedure, to each window
output by the spatial refinement, appearance and motion re-

Fig. 4. Various cases of cropped training samples, with different entering
angles/directions, with/without occlusions, and with/without crosswalks.

finement are performed in the temporal space according to the
following two steps.

1) Appearance refinement with HOG-based linear SVM: for
a given window, the previous p = 3 frames are cached,
and the corresponding windows in these frames are classi-
fied by the HOG+LinSVM classifier. A positive decision
is made when (p − μ) of these corresponding windows is
classified as positive, with μ set to two in our experiments.

2) Movement direction refinement with optical flow: for
windows that pass the preceding appearance refinement,
the displacements of its pixels are computed in the p
preceding frames by optical flow [16]. If the mean X-
axis displacement among the p frames is negative1 and
has a magnitude that exceeds a threshold θm, then the
pedestrian is considered to be entering the road scene, and
a positive detection is made.

V. DATA SETS

Large data sets of pedestrian images have been collected
by many research groups, and several video data sets have
recently become available [6], [7], [31]. However, these data
sets do not contain many sudden pedestrian crossings and are
thus unsuitable for our application. In this section, we describe
the process for constructing our image and video data sets and
present the video data set statistics. We intend to make our
image and video data sets publicly available in the near future.

A. Training Image Data Set

For training the classifiers used at the frame level, we com-
piled a set of 2500 grayscale side-view pedestrian images,
which differs from standard pedestrian image sets that mainly
consist of pedestrians at a frontal view. To obtain the training
image set, we first tightly crop side-view pedestrian images
from other pedestrian training/testing sets [8], movies, and
Internet images. As shown in Fig. 4, the training samples
consist of people with different entering angles and poses,
occlusions, and cases with/without crosswalks. The cropped
images are then resized to a height of 128 pixels, and all left-
facing pedestrian images are reflected to face rightward. These
resized images are turned into final training samples with a
uniform size of 128 × 32 as follows: if the width of the resized
image exceeds 32 pixels, we cropped the rightmost 128 × 32
portion of the image to form a training sample; otherwise, we
resized this image to 128 × 32.

1In our implementation, the present frame is treated as the reference frame.
Therefore, the previous p frames of the video sequence covering an entering
process may have negative X-axis displacements.
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B. New Testing Video Data Set

The video data set used in testing our method was acquired
using a vehicle-mounted high-definition (HD) video camera
(SONY HDR-SR5E) of 1440 × 1080 resolution and 25 fps
frame rate. Video clips were captured of people who were
instructed to walk/run/jump from left to right in front of the
moving vehicle. To our knowledge, this is the first HD pedes-
trian data set captured from a moving vehicle.2 Unlike 640 ×
480 videos in which adults are less than 80 pixels in height at
a distance of 30 m from the camera [6], [7], adults in our data
set are about 120 pixels tall at the same measured distance. The
statistics of this data set are given in the following.

1) Video Set: The data set consists of 55 video clips that
are divided into five sets according to vehicle speed Vv

3 and
pedestrian overlap: set 1 contains seven videos with no camera
motion (no speed; Vv = 0), while sets 2–4 were captured with a
moving camera. Set 2 contains six videos at a very low vehicle
speed (Vv ≤ 10 km/h), set 3 contains 23 videos at a low vehicle
speed (10 km/h < Vv ≤ 20 km/h), set 4 contains 14 videos
at a medium vehicle speed (20 km/h < Vv ≤ 35 km/h), and
set 5 contains five videos with two entering and overlapping
pedestrians, with a vehicle speed of about 20–30 km/h. These
videos were converted to seq and mat file formats and labeled
using the toolbox of [6]. Please note that pedestrians standing
still or moving to the left are not labeled; thus, a total of 5250
pedestrian images were collected from these videos.

2) Sudden Crossing Event Statistics: A sudden crossing
event is defined to start at an entering ratio of αe = 0.25 and to
end at an entering ratio of αl = 1.5. For an entering ratio of less
than 25%, it is often difficult even for humans to tell whether
it is a pedestrian. To enlarge the test data set, we shift the
reference line to 11 sampled locations at intervals of 64 pixels
along the X-axis, thus simulating up to 11 sudden crossing
events with each crossing pedestrian. Although the pedestrian
remains the same with these shifts, the motion and background
will, in general, not be identical. The leftmost reference line is
set to X = 64 in order to compute the ground truth bounding
box for analysis purposes. Note that, in a real application of our
system, the reference line is set to X = 0. With this expansion
of the testing data set, there are totally 314 sudden crossing
events from 605 video clips.

VI. EVALUATION CRITERIA

In pedestrian detection, various false positive detection mea-
sures have been used for evaluation and comparison. For this
paper, we examine false positives per image (FPPI), which
is generally considered to be more appropriate for sliding-
window-based methods than false positives per window [6].

For true positive evaluation, we consider an event as a unit,
i.e., we evaluate the detection rate in terms of true positives per
event in the experiments. In a sudden pedestrian crossing event,

2Other benchmark videos were captured at resolutions of 320 × 240, 640 ×
480, or 720 × 576.

3For the purpose of this application, the crossing pedestrians are not too far
from the vehicle but, at the same time, not too close due to safety reasons. Since
the application targets urban environments, the vehicle is not moving too fast.

we define a true positive detection as an entering pedestrian
that is detected correctly in at least one frame. For evaluation
at the frame level, we use the PASCAL measure [6], in which
a true positive detection is recorded when at least one detected
bounding box BBdt overlaps with the ground truth pedestrian
bounding box BBgt by a minimum ratio of θo = 0.5. The
overlap ratio β is defined as

β =
area(BBdt

⋂
BBgt)

area(BBdt

⋃
BBgt)

(2)

where the left edge of bounding box BBgt lies on the reference
line when the entering ratio is less than 1 (i.e., when the
pedestrian has not yet fully entered the camera view).

Performance may be evaluated in terms of quantity (i.e.,
+1 for each positive detection and −1 for each false alarm)
or quality (i.e., positive and negative scores that account for
overlap ratio and entering ratio). Here, we reward high overlap
ratios and low entering ratios for positive detections and pe-
nalize accordingly for negative detections. Based on this idea,
different from traditional piecewise/binary scores, we propose
to score true/false positives on a continuous scale as follows:

Stp(α, β)

=
αe

1 − θo
· β − θo

min(α, 1)
if β ≥ θo, αe ≤ α ≤ αl (3)

Sfp(α, β)

=
{

αe

θo
· β−θo

min(α,1) if β < θo, αe ≤ α ≤ αl

−1 if β < θo, (α < αe or α > αl)
(4)

S(α, β)

=
{

Stp(α, β) if it is a true positive detection
Sfp(α, β) if it is a false positive detection

(5)

where α and β are defined by (1) and (2), αe/(1 − θo) is
a coefficient for normalizing Stp to [0, 1], and αe/θo is a
normalization coefficient for Sfp. We note that the formulation
of (3), which is the score of a positive bounding box, generally
leads to very small true positive scores since a full score of
1 requires 100% overlap between the detection bounding box
and the pedestrian and must occur at the minimum entering
ratio of αe = 25%. After a pedestrian has entered at a 50%
ratio, the maximum score of a detection is only 0.5 even if
the detection bounding box perfectly overlaps the ground truth.
This evaluation criterion is particularly stringent for sliding-
window-based approaches that have a fixed aspect ratio for
windows. We smooth the score S using a sigmoid function

Hg(S) =
1 + e−b

1 − e−b
· 1 − e−bS

1 + e−bS
S ∈ [−1, 1] (6)

where b is a positive scalar parameter and (1 + e−b)/(1 − e−b)
is a scale factor for normalizing Hg to [−1, 1] (i.e., Hg(−1) =
−1, Hg(1) = 1).

Although these criteria are specifically proposed for perfor-
mance evaluation of partially visible pedestrian detection, it can
readily be used in any general pedestrian detection application.
For example, existing evaluation methods output +1 if the
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overlap ratio between the detection bounding box and the
ground truth box is greater than a predefined threshold θo and
−1 if the overlap ratio is less than θo. However, the manually
labeled ground truth may not be accurate, so we believe that
a criterion with a continuous score is more reasonable and
accurate. Since entering ratios are not used for fully visible
pedestrians, we can simply remove the α’s in (3) and (4)
to obtain the following definitions for scoring fully visible
pedestrian detection results:

S =

{
β−θo

1−θo
if β ≥ θo (true positive detection)

β
θo

− 1 if β < θo (false positive detection).
(7)

This score may also be postprocessed using (6).
One can see that the linear method [i.e., (5) and (7)] and the

sigmoid method output continuous scores with respect to β (i.e.,
the overlap ratio between the detection bounding box and the
annotated ground truth); by contrast, the binary method sharply
separates the possible scores even though the manually labeled
ground truth may not be completely accurate. Unlike the linear
method, the sigmoid method can more clearly separate scores
that lie away from the decision boundary. Moreover, when the
input S ∈ [−1, 1], the output Hg approaches the binary evalua-
tion method for large values of b, while it approaches the linear
method for small positive values of b. The sigmoid method
offers greater generality, with the existing binary evaluation
method as a special case.

VII. EXPERIMENTAL RESULTS

Using the acquired data sets and presented evaluation crite-
ria, we report the performance of our method on this problem.
The experiments were performed on a 2.67-GHz PC with
1.5-GB DDRII RAM using a single thread, with implementa-
tions of HOG classification and optical flow that were revised
from OpenCV2.0. It is shown that the three-level framework
obtains solid detection performance at a high detection speed.
Our experiments examine cases with only pedestrians that enter
from the left side. To also handle pedestrians entering from
the right, each video frame can be flipped about the Y -axis to
double the number of input frames and to reduce the processing
speed by half. The processing speeds reported in the Abstract
and in Section I reflect this two-sided configuration, while the
speeds given in this section assume left-entering pedestrians
only.

A. Parameters

A total of nine parameters, listed in Table I, are used in our
algorithm. Four of them are related to event definition and eval-
uation and do not affect pedestrian detection performance. Four
of the remaining five parameters have fixed values throughout
all experimentation, while one parameter requires tuning.

The following parameters affect system performance.
1) The threshold ω is used in NMS for merging overlapped

windows with positive detections. Since it is employed
with the commonly used intersection-over-union evalua-
tion metric, we set it to the typical value of 0.5.

TABLE I
PARAMETER SETTINGS

TABLE II
PERFORMANCE OF EACH LEVEL

2) The p and μ in the temporal refinement step are parame-
ters used in examining the support of a positive detection
among previous frames. Here, we set the parameters to
require at least one of the preceding three frames to also
have a positive response.

3) In the LBP difference-based local level detection, f and
θf need to be set to balance detection accuracy and speed.
We empirically fix θf to 6 and tune f according to vehicle
speed. In our experiments, f can take one of two values,
depending on whether the camera is fixed or moving. In
this way, only one parameter needs to be tuned in this
paper.

B. Performance of Each Level

In the coarse-to-fine framework, each level contributes to
detection performance and accelerating the detection process.
The effectiveness of each level in terms of candidate window
reduction, false positive reduction, and execution time is shown
in Table II for the event definition parameters αe = 0.25 and
αl = 1.5 and true positive evaluation threshold θo = 0.5. In
the table, AIW# denotes the average number of input windows
to that level, and AOW# refers to the output windows. The
corresponding ROC curves in Fig. 5(a) and scored curves in
Fig. 5(d) show that each level improves detection accuracy.
In Table II, the benefit of the sparse sliding window strategy
is evident, with only 184 windows in each frame that need
to be processed. Moreover, the LBP difference-based motion
filter rejects most of the negative windows while retaining
100% of the true positives for later processing. This reduces
the 184 windows down to 8 on average, which allows for
more complex processing at later levels with fast computation
times. At the frame level, the coarse detection with the cascaded
SVM classifiers removes some false positives, and then, the
spatiotemporal refinement and fine localization reduce the false
positive rate further.

For a more challenging case where detection is constrained
only to partially visible pedestrians, for example, when αe =
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Fig. 5. (a) ROC curves and (d) scored ROC curves of different levels with parameters αl = 1.5 and θ0 = 0.5. (b) ROC curves and (e) scored ROC curves of
different levels with parameters αl = 0.75 and θ0 = 0.5. (c) ROC curves of different levels with parameters αl = 1.5 and θ0 = 0.25.

0.25 and αl = 0.75, we obtain the ROC curves and scored
curves shown in Fig. 5(b) and (e). While the trend from level
to level remains the same with these settings, the effect of the
spatiotemporal refinement is seen to be more pronounced, with
a detection rate improvement from 49% to 64% at 0.01 FPPI,
equivalent to a 30.6% relative improvement. By contrast, when
αl = 1.5, the improvement is from 67% to 73%, equivalent
to a 9.0% relative improvement. This comparison illustrates
the particular importance of video-level refinement in early
detection of sudden pedestrian crossings.

The reported results for true positives follow that of PASCAL
with θo = 0.5 [6]. If this threshold is relaxed to 0.25 [7],
the performance increases appreciably. As shown in Fig. 5(c),
for αe = 0.25 and αl = 1.5, our method achieves a detection
rate of 92% at 0.01 FPPI and 54% at 0.001 FPPI, which is
equivalent to 54% true positive detection and 1.5 false positives
per minute. This performance is promising for practical appli-
cations, especially when considering the real-time processing
on simple hardware.

C. Performance With Different Vehicle Speeds and
Pedestrian Occlusions

In this section, we investigate the performance of the pro-
posed approach under different vehicle speeds and also dif-
ferent occlusions due to pedestrian overlap. We asked the
pedestrians to enter with different movement styles and speeds.
Vehicle speed was purposely kept at one of four levels. We did
not control the entering of other people, vehicles, and bicycles
in the scene.

From the ROC curves shown in Fig. 6, one can make a con-
clusion that the proposed system exhibits reduced performance

in the case of multiple overlapping pedestrians in comparison to
single individuals. This is as expected since the multiple over-
lapping pedestrian case is particularly difficult. The occluded
person usually cannot be correctly detected since only a very
small part is visible and may be included in the bounding box
of another visible person. We note, however, that acceptable
results can be obtained in practice if the person in front (the
occluder) is correctly detected.

Except for this difficult case, we can observe that the system
performance is no worse than the reported average perfor-
mance; however, the effect of vehicle speed remains unclear. In
Fig. 6(a) and (b), the performance is comparable for different
vehicle speeds, except for the very low speed case. With our
proposed scored criteria, in Fig. 6(d), the performance for
different vehicle speeds is comparable, except for the low
speed case; in Fig. 6(e), only the very low speed case has
higher performance, especially at low false positive rates (e.g.,
0.001FPPI). In Fig. 6(c), when the threshold θo is relaxed to
0.25, the performance is almost the same at a low false positive
rate of 0.001FPPI with different vehicle speeds, except for the
very low speed case. We believe that the slight differences in
performance may be the result of different background and
pedestrian appearances among the videos at different speeds.

D. Performance Comparison to Dense Sliding Windows

Our method, which utilizes sparse sampling of sliding win-
dows, is compared here to methods that employ dense sliding
window sampling. In the dense sampling, the scaling factor is
set to 1.05, and the shift step is 1/32 of the window height,
only along the Y -axis as in our method, to give 2956 sliding
windows in total. For a fair comparison, all of the classifiers
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Fig. 6. (a) ROC curves and (d) scored ROC curves of different vehicle speeds with parameters αl = 1.5 and θ0 = 0.5. (b) ROC curves and (e) scored ROC
curves of different vehicle speeds with parameters αl = 0.75 and θ0 = 0.5. (c) ROC curves for different vehicle speeds with parameters αl = 1.5 and θ0 = 0.25.

Fig. 7. (a) ROC curves and (b) scored ROC curves of dense sliding-window-
based methods and our method (αl = 0.75 and θ0 = 0.5).

are trained using the same data set and the same imple-
mentation of HOG, Haar, and NMS. We also compare these
HOG+LinSVM-based methods with the well-known Haar-
like+Adaboost method. The OpenCV toolbox [39] is adopted
to train the classifier by using the default parameter setting
with the same number of positive samples and 15 000 negative
samples, i.e., much more negative samples are used. Finally,
515 out of 2 938 688 features are selected for the Adaboost
classifier with 15 layers.

From the ROC curves shown in Fig. 7(a), one can draw
the following conclusion: 1) the Haar-like+Adaboost method
has the lowest performance; this observation is consistent with
previous studies [6], [7], which indicates that the HOG feature
has more discriminative power for larger sized pedestrian de-
tection; 2) NMS increases the accuracy of HOG classification,
which is consistent with existing work [31]; 3) a cascaded
HOG+Haar classifier further increases accuracy because the
global texture feature can overcome the shortcoming of the
edge sensitive HOG feature; and 4) the spatiotemporal-based

coarse-to-fine framework has the highest detection rate, and the
scored ROC curves shown in Fig. 7(b) indicate that the three-
level framework detects crossing pedestrians earlier and/or with
a better bounding box fit. In addition, as shown in Fig. 5(a),
when αl = 0.75, 1.0, and 1.5, our method, respectively, gives
a 9%, 10%, and 9% absolute improvement in detection rate
using the binary evaluation method at 0.01 FPPI over the dense
HOG+Haar+NMS method.

E. Detection Speed

In the proposed framework, some acceleration measures are
used in order to perform real-time detection. As shown in
Table II, the average time cost of our method is 9.06 ms per
frame excluding I/O costs, and there is no significant difference
between videos captured at different vehicle speeds. Compared
with the traditional dense scanning strategy with only HOG
features and NMS, the processing speed increases by about two
orders of magnitude from 765.60 to 9.06 ms per frame. More-
over, as shown in Fig. 7(a), for entering ratios of 25%–75%, the
detection rate increases significantly from 45% to 63% at 0.01
FPPI, equivalent to about a 40.0% relative improvement.

F. Evaluation Criteria

Comparing Fig. 5(d) with Fig. 5(a) and Fig. 5(e) with
Fig. 5(b), the proposed evaluation criteria defined in (5) are
seen to be in accordance with traditional quantitative mea-
sures. However, as shown in Fig. 7(a) and (b), the proposed
criteria additionally account for the quality of positive de-
tections. For example, the performance differences between
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Haar-like+Adaboost and HOG-based methods are more distinct
by evaluating with the proposed criteria [Fig. 7(b)]. Similarly,
in Fig. 7(a), the HOG curve and HOG+NMS curve overlap
in the region of [0.01, 0.1] FPPI, while the scored curves in
Fig. 7(b) indicate the higher accuracy of the HOG without
NMS method within this interval. This can be explained by the
NMS reducing false positives by merging overlapped boxes and
removing boxes with smaller decision values; however, it also
removes some correct positive detections, and this will lead to
a lower positive score in the region of comparatively high false
positive scores. In regions where the nonscored ROC curves are
indistinct, the scored curves can provide a more detailed and
physically meaningful comparison.

VIII. CONCLUSION

In this paper, the problem of detecting sudden pedestrian
crossings has been defined and studied as an application for
driving assistance systems. A three-level framework has been
proposed to locate crossing pedestrians as early as possible (i.e.,
before fully entering the camera view) with a low false alarm
rate as needed in practical systems. With a newly collected data
set and the proposed evaluation criteria, the effectiveness of this
approach has been demonstrated.

In future work, we plan to elevate the performance in four
ways. 1) We plan to include sensor (camera) characteristics into
the detection algorithm and establish the distance relationships
between virtual reality and physical reality. 2) We want to
improve the performance in the frame-level processing, such
as by investigating new static features. 3) We wish to intro-
duce kinematics knowledge into the detection algorithm for
better utilization of motion information. 4) We plan to improve
classification accuracy by adopting new algorithms based on
likelihoods. We also would like to extend this system to handle
a broader set of obstacles, such as other vehicles.
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