
J. Parallel Distrib. Comput. 71 (2011) 615–620
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Research note

Connected component labeling on a 2D grid using CUDA
Oleksandr Kalentev a,∗, Abha Rai a, Stefan Kemnitz b, Ralf Schneider c
a Max-Planck-Institut für Plasmaphysik, Wendelsteinstr. 1, D-17491 Greifswald, Germany
b Fachhochschule Stralsund – University of Applied Sciences, Zur Schwedenschanze 15, D-18435 Stralsund, Germany
c Ernst-Moritz-Arndt-Universität, Domstr. 11, D-17487 Greifswald, Germany

a r t i c l e i n f o

Article history:
Received 28 May 2010
Received in revised form
13 October 2010
Accepted 14 October 2010
Available online 26 October 2010

Keywords:
CUDA
GPU
Parallel
Connected component
Component labeling
Mesh

a b s t r a c t

Connected component labeling is an important but computationally expensive operation required in
many fields of research. The goal in the present work is to label connected components on a 2D binary
map. Two different iterative algorithms for doing this task are presented. The first algorithm (Row–Col
Unify) is based upon the directional propagation labeling, whereas the second algorithm uses the Label
Equivalence technique. The Row–Col Unify algorithm uses a local array of references and the reduction
technique intrinsically. The usage of shared memory extensively makes the code efficient. The Label
Equivalence algorithm is an extended version of the one presented by Hawick et al. (2010) [3]. At the
end the comparison depending on the performances of both of the algorithms is presented.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Connected component labeling is an important problem ap-
pearing in different fields of research. Although one can consider
this problem as a general one, namely arbitrary graph component
labeling or coloring, often the specific task of labeling connected
components on a grid is of great interest. This is needed for ex-
ample in computer vision as a part of segmentation, namely sep-
arating the objects from the background. It reduces the image to
a binary representation, in which objects are represented by 1’s
and the background by 0’s. Another field of application are cellu-
lar automata (CA) models used for different kinds of simulation in
physics, mathematics and biology.

Since the early 1970s, numerous approaches for connected
component labeling have been introduced [4,8–10]. Most of these
approaches are suitable for sequential processing, but also some
parallel algorithms have been developed [5,1].

The use of GPUs with interfaces as CUDA [6] or OpenCL [7]
opens a newperspective formany data processing approaches. The
problem of graph component labeling with GPUs has already been
addressed by Hawick et al. [3].

In the current work, we present two algorithms for connected
component labeling on a 2D binary grid. For our implementations,

∗ Corresponding author.
E-mail addresses: okalenty@ipp.mpg.de, o.kalentev@googlemail.com

(O. Kalentev).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.10.012
weuse CUDA andmeasure the performances of the two algorithms
on an NVIDIA TESLA C1060. The first algorithm for directional
propagation labeling uses the reduction technique. For the second
algorithm, we improve and extend the implementation by Hawick
et al. [3], which allows one to reduce the total memory usage
and simplifies the original procedure. We demonstrate that our
implementation can be easily extended to compute different
connected component characteristics such as area or perimeter.
This is of interest, e.g. in cases where binding energies of cluster
atoms change with cluster sizes.

The paper is organized as follows. In Section 2, the two algo-
rithms are described. Section 3 presents the comparison of the per-
formances. In Section 4, we conclude the paper.

2. Algorithm description

Connected component labeling in our framework is the
assignment of a unique label to each non-zero element on a 2D grid
in such away that all non-zero neighbors get the same label. In this
work we consider 2D cases with four neighbors (north, south, east
and west).

2.1. Row–Col unification

The first algorithm is similar to a ‘‘kernel C’’ algorithmdescribed
in [3]. This method implements the directional propagation label-
ing. In the initial ‘‘kernel C’’ approach, each thread is responsible
for the whole row or column.

http://dx.doi.org/10.1016/j.jpdc.2010.10.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:okalenty@ipp.mpg.de
mailto:o.kalentev@googlemail.com
http://dx.doi.org/10.1016/j.jpdc.2010.10.012

616 O. Kalentev et al. / J. Parallel Distrib. Comput. 71 (2011) 615–620
Fig. 1. Row–Col Unify procedure.
In our implementation, we intrinsically apply the reduction
technique, which is well known in parallel computing [2]. This
technique allows one to obtain integrated characteristics of a
bunch of data, for example, the sum of array elements. Addition-
ally, in our implementation we use shared memory and a local ar-
ray of references. In the following section, we describe the main
steps of the algorithm.

The main idea of the algorithm is the propagation of the label
with the smallest value. The procedure has to initialize all non-
zero elements with unique identifiers which are equal to the value
of the corresponding index of the element in the label array.
Thereafter, the smallest label value propagates along all rows and
then columns (see Fig. 1). Making several iterations of such a label
propagation procedure, the algorithm finally marks all elements
in each connected component with the smallest label value of this
connected domain.

Algorithm 1 Row–Col Unify algorithm. Host part.
Require: mapLabelsHost,mapLabelsDev
Require: ContinueIndHost, ContinueIndDev
mapLabelsDev← mapLabelsHost
call: InitializeLabels
while ContinueIndHost ≠ 0 do

ContinueIndHost ← 0
ContinueIndDev← ContinueIndHost
call: UnifyRow(mapLabelsDev, ContinueIndDev)
call: UnifyCol(mapLabelsDev, ContinueIndDev)
ContinueIndHost ← ContinueIndDev

end while
mapLabelsHost ← mapLabelsDev

The current implementation of the ‘‘Row–Col Unify’’ algorithm
is suitable only for a map with size 1024 × 1024. The adaptation
for other sizes was not done due to the fact that this algorithm
is much slower than the second one (see Section 3). The
algorithm is iterative and consists of two steps. The host part
is described in pseudo-code in Algorithm 1. First, the label
array (mapLabels Dev) is initialized with unique identifiers. Then,
two unification procedures for rows (UnifyRow) and columns
(UnifyCol), respectively, are called within the while loop. Each
procedure requires two parameters: the first one is the label array
mentioned above; the second one is an integer indicator for the
loop termination. If UnifyRow or UnifyCol do not set this indicator
to 1, the while loop is terminated. This is possible due to the
fact that the operation of value assignment does not produce any
synchronization problems for CUDA devices in this case.

Themain routine kernel is described in Algorithm 2. It is identi-
cal for both row and column unification. The procedures for row
and column processing differ from each other only in the way
they access the global memory. The grid for this kernel is con-
structed in the following way: threads from the same block access
the same row or column. The layout of the global memory is orga-
nized in such a way that the access for rows is coalesced whereas
for columns it is not. In the routine, the label array is copied first
from the global to the shared memory, where also the local array
of references is allocated. We add onemore element to the front of
the label and reference arrays to avoid unnecessary conditioning
during the update procedure.

Algorithm 2 Row–Col Unify algorithm. Main routine kernel.
Require: mapLabelsDev, shmemLabels, shmemRefs
Require: ContinueInd
shmemLabels← mapLabelsDev
call: UnifyRowI((threadId ∗ 2+ 1), ContinueInd, shmemLabels,
shmemRefs)
if threadId < 256 then

call: UnifyRowL((threadId ∗ 2+ 1) ∗ 2, shmemLabels,
shmemRefs)

end if
call: syncthread()
call: Update(threadId ∗ 2+ 1, shmemLabels, shmemRefs)
call: syncthread()
if threadId < 128 then

call: UnifyRowL((threadId ∗ 2+ 1) ∗ 4, shmemLabels,
shmemRefs)

end if
call: syncthread()
call: Update(threadId ∗ 2+ 1, shmemLabels, shmemRefs)
call: syncthread()

...

...

...

if threadId < 1 then
call: UnifyRowL((threadId ∗ 2+ 1) ∗ 512, shmemLabels,
shmemRefs)

end if
call: syncthread()
call: Update(threadId ∗ 2+ 1, shmemLabels, shmemRefs)
call: syncthread()
mapLabelsDev← shmemLabels

Secondly, we apply an initial unification procedure which is
the first step of reduction. This is described in Algorithm 3. Each
two neighboring elements are processed in each thread. If both
elements in the label array are non-zero, then the one that has the
smallest value is propagated, i. e., this value is assigned to both
array elements. The references of these elements are initialized
according to the indices of the elements: the one with the larger
index value references the one with the smaller index value which
has a reference to itself. This is shown in Fig. 2.

The ContinueInd indicator is set to 1, if two neighboring non-
zero elements that are not equal to each other are found.

Then, a cascade of reduction and update steps is executed.

O. Kalentev et al. / J. Parallel Distrib. Comput. 71 (2011) 615–620 617
Fig. 2. Row–Col Unify algorithm. Initialization and first reduction step.
Fig. 3. Row–Col Unify algorithm. Reduction and update step 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Algorithm 3 Row–Col Unify algorithm. References initialization,
1st step of unification.
function UnifyRowI(iPos, ContinueInd,
shmemLabels, shmemRefs)
if shmemLabels[iPos] ≠ 0&&shmemLabels[iPos+ 1] ≠ 0 then

if shmemLabels[iPos] ≠ shmemLabels[iPos+ 1] then
shmemLabels[iPos] ← min{shmemLabels[i] | i = iPos, iPos+
1}
shmemLabels[iPos+ 1] ← shmemLabels[iPos]
ContinueInd← 1

end if
end if
shmemRefs[iPos] ← iPos
shmemRefs[iPos+ 1] ← iPos
return

Each subsequent step in the cascade requires half the numbers
of active threads for the UnifyRowL reduction procedure compared
to the previous step. However, it uses all threads in a block for
an Update procedure. In Fig. 3, an example of one (third) step of
reduction is shown. As mentioned before, in the first reduction
step each thread processes two neighboring elements. In the
subsequent steps, the number of neighboring elements processed
by each thread doubles, i.e., in step 2 the number of elements is 4,
in step 3 the number of elements becomes 8 and so on.

In Fig. 3, three groups of labels and references which are
processed by three threads are shown. The separation of groups is
indicated by thicker lines. Each thread checks the values of the two
central elements of the corresponding groups (yellow). If they are
non-zero, the minimum value of these two elements is assigned to
the element which is referenced by the element with the smaller
index value from the processed pair. The references are taken from
the reference array. The references of the processed pair are also
updated, i.e., the element with the larger index value receives
the same reference as the element with the smaller index value.
The updated values in both arrays are marked in red. A detailed
description of the UnifyRowL procedure is given in Algorithm 4.
Algorithm 4 Row–Col Unify algorithm. UnifyRowL procedure.
function UnifyRowL(iPos, shmemLabels, shmemRefs)
Require: iRef

iRef ← shmemRefs[iPos]
if shmemLabels[iPos] ≠ 0&&shmemLabels[iPos+ 1] ≠ 0 then

shmemLabels[iRef] ← min{shmemLabels[i] | i = iPos, iPos +
1}
shmemRefs[iPos+ 1] ← shmemRefs[iPos]
shmemLabels[iPos+ 1] ← shmemLabels[iRef]

end if
return

After the procedure UnifyRowL is finished, all threads in a block
must be synchronized and the Update function is called in order to
complete the reduction step. Here, all threads update both labels
and references for two processed neighboring elements, i.e., each
element obtains the corresponding label and reference from the
element to which it currently points. Algorithm 5 summarizes the
Update procedure.

Algorithm 5 Row–Col Unify algorithm. Update procedure.
function Update(iPos, shmemLabels, shmemRefs)
Require: iRef

iRef ← shmemRefs[iPos]
shmemLabels[iPos] ← shmemLabels[iRef]
shmemRefs[iPos] ← shmemRefs[iRef]
iRef ← shmemRefs[iPos+ 1]
shmemLabels[iPos+ 1] ← shmemLabels[iRef]
shmemRefs[iPos+ 1] ← shmemRefs[iRef]
return

The weak point of this procedure is the bank conflicts which
lead to the serialized requests for the reading of the value needed
for the update. This gives rise of the performance drop for the
whole procedure.

618 O. Kalentev et al. / J. Parallel Distrib. Comput. 71 (2011) 615–620
Table 1
The benchmark of the Row–Col Unify and the Label Equivalence algorithms.

Time (ms)
Blobs Spiral Random
C1 C2 C3 C4 – 0.5 0.1

RC 87.16 87.89 87.27 87.65 4501.56 254.47 34.75

LE NSZ 5.60 5.77 5.89 6.68 5.60 6.47 1.56
SZ 16.25 16.28 15.22 17.30 38.86 14.23 2.11

2.2. Hoshen–Kopelman or Label Equivalence

The second presented algorithm is similar to the well-known
Hoshen–Kopelman [4] algorithm. Recent publications by Suzuki
et al. [10] and Wu et al. [11] give a nice description of the label
equivalence procedure for the labeling of connected components
in a binary image in the sequential case.

The parallel version of the Label Equivalence algorithm for GPUs
has been presented by Hawick et al. [3].

According to their description, the multi-pass algorithm con-
sists of three phases which are repeated in a loop: scanning, anal-
ysis, and labeling. The first phase constructs a forest of references,
the second one connects all references in each tree to the root, and
the third one assigns the corresponding labels according to the ref-
erences.

Our implementation is significantly improved compared to the
algorithm presented by Hawick et al. [3] in terms of memory
consumption: there is no need for an additional reference array.
Apart from that, it requires less steps: the labeling phase is omitted.
Other features are the usage of padding which allows us to avoid
extra conditioning for the border elements. Atomic operations
which slow down the computation dramatically due to their
synchronous nature are also omitted in the scanning phase. This
is possible due to the iterative nature of the algorithm: if collision
happens, it will be resolved during the next iterative step. Fig. 4
demonstrates the first step of the algorithm as well as usage of the
padding. Here, the left picture shows initial labels with the value
equal to the array index, starting from the left top added element.
The right one shows labels after the first step of the algorithm.
Considering labels as references one can find the forest consists of
8 trees (for convenience they are depicted with different colors).
After the second step values of all the labels in those trees will be
the same and equal to the corresponding root’s label value, i.e., 20
for the gray region, 31 for the orange, 41 for the blue etc.

Listing 1 shows the initialization procedure. ‘UINT’ stands for
the ‘unsigned int’ type. ‘SIZE*’ and ‘SIZE*PAD’ are definitions of
macros for the size of the working area and the whole area includ-
ing padding, respectively. The label array must be filled with a bi-
nary image. The procedure initializes all non-zero elements with
unique identifiers which are equal to the value of the correspond-
ing index of the element in the label array. This allows us to use
these values later as references.

After initialization of the label array, the main loop for the
iterative labeling of connected components starts. Two functions
are called on each step: ‘‘Scanning’’ and ‘‘Analysis’’. The first
function represents the first phase of the algorithm, namely the
linking of the elements. This is done by choosing the smallest
nonzero label value within five elements: one central and its
neighbors (see Listing 3). As labels with zero value are ignored
during the procedure, constructed trees never connect to the
background and, therefore also with each other. As a consequence
of the locality of the procedure, the algorithm works for any
number of disconnected components.

The indicator IsNotDone is only set to 1, if the label value is
changed. This is done in order to stop execution of the algorithm
when no further iterations are needed.

The second function represents the relabeling phase of the
algorithm. Here, in a while loop each thread takes a sequence
Fig. 4. Label Equivalence procedure. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

of labels starting from the current position considering them as
references.

The loop is terminated when the label with the value that
coincides with the index of that element is found (see Listing 2).
This procedureworks remarkably fast due to the fact that the steps
which are performed previously make the later ones shorter.

Fig. 5 gives an example of such a situation. Here, the root ele-
ment is shown in gray. All labels are linked to it if they are consid-
ered as references. For example, if for an element with index 6 (in
blue) the relabeling was already done. Then, for an element with
index 10 the sequence is shorter, because after processing element
6 the first element will be taken directly.

3. Benchmarks and discussion

To measure the performance of the two algorithms presented
before several tests have been done. All tests presented in the
following section are run on an NVIDIA TESLA C1060.

Table 1 summarizes the results for images with such a size
and different topological and occupational settings of the image.
Under topological settings we understand different shapes of the
connected components, whereas occupational settings refer to the
fraction of the connected components to the image size. Here, ‘‘RC’’
stands for the ‘‘Row–Col Unify’’ and ‘‘LE’’ for ‘‘Label Equivalence’’
algorithms. In Table 1, three different cases of the image filling are
considered: spiral (see [3] for the details), random, and blob with
random. The first one is traditionally considered to be a particularly
complex case, whereas the second and the third ones are of great
interest for tasks like cellular automata (CA).

For the CA procedure, one usually starts with a random
distribution of the occupied cells and follows their dynamicswhich
often results in some blobs of a certain size and a randomly
distributed small noise. We compare two cases for the random cell
distribution with occupation ratios of 0.5 and 0.1, which means
that half and 10% of the image cells are occupied, respectively.

For the ‘‘blob with random’’ distribution we consider four cases
with different blob sizes (C1-blob radius 10, C2-20, C3-50, C4-100).
The occupation ratio is kept fixed at 0.5. Half of the occupied cells
are assigned to blobs and the rest are randomly distributed. This
choice of fixed occupation ratio and different blob sizes result in
different numbers of blobs for different cases.

For the ‘‘Label Equivalence’’ algorithm, the performance of the
extended version of the procedure (named in Table 1 ‘‘SZ’’) as well
as that of the original one (named in Table 1 ‘‘NSZ’’) is measured.

To demonstrate the flexibility of our extension of the ‘‘Label
Equivalence’’ algorithm in addition to the pure labeling the size
of each connected component is also calculated, which is needed
e.g. for calculating cluster-size dependent binding energies in CA
applications. For that purpose another array _CSize is used. This
array must be initialized with 0’s in non-occupied cells and with

O. Kalentev et al. / J. Parallel Distrib. Comput. 71 (2011) 615–620 619
Table 2
Random distribution with different occupation ratio.

Time (ms)
0.2 0.3 0.4 0.6 0.7 0.8 0.9 0.99

KB NSZ 10.33 15.50 18.90 39.34 34.12 33.91 36.30 24.42
SZ 16.74 27.81 38.84 84.21 95.70 113.60 137.95 317.06

Iter. num. 4 5 5 8 5 4 4 3
Fig. 5. Relabeling procedure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 3
Scanning over picture size.

Time (ms)
1024×1024 2048×2048 4096×4096 8128× 8128

KB NSZ 6.50 24.98 97.88 388.24
SZ 14.30 55.75 217.89 870.70

Table 4
Scanning over the size of the block.

Time (ms)
512 256 64 16 4 1

KB NSZ 25.09 24.91 25.34 36.19 123.15 453.331
SZ 55.41 55.73 55.13 62.13 154.91 522.085

1’s in occupied cells. The only part which has to be modified is
the ‘‘Analysis’’ function. Neededmodifications are shown in Listing
4. The presented code has to be added after the assignment of
the label at the end of the function. Here, after reconnecting the
element with the root of the tree of references the size of the
root is incremented by the size of the current element, which
afterwards is set to 0. In order to synchronize the summation
atomic operations are used. As a result of calculations one gets an
array with connected component sizes stored in the element with
the smallest index for each component. Other extensions to the
algorithm can be done in a similar manner.

Table 1 shows that the ‘‘Label Equivalence’’ algorithm is faster in
all cases. Blob sizes do not affect the speed of the second algorithm.
The occupation ratio, on the other hand, influences the speed
significantly.

The case with a spiral distribution is extremely difficult to han-
dle for the first algorithm and very easy for the second one. It is
interesting to mention that our modification of the ‘‘Label Equiv-
alence’’ algorithm needs only 3 iterations for such a distribution
regardless of the size of the map. This shows that the number of
iterations needed for the second algorithm depends strongly on
the topology of the connected component and onlyweakly on their
size.

Table 2 shows the change of the performance of two modifica-
tions of the ‘‘Label Equivalence’’ algorithm with respect to differ-
ent occupation ratio for the case of 2048 × 2048 grids. Here, the
maximum number of iterations, and therefore calculation time, is
needed for the case of an occupation ratio of 0.5–0.6. For other oc-
cupation ratio values the time consumption is less, although for
the case of high occupation ratio it drops slower than for the lower
ones. The reason for this is the first condition checking for the non-
zero elements.

Table 3 shows the performance of the ‘‘Label Equivalence’’
algorithm with different sizes of the map. The execution time
increases linearly with the total number of cells.
Table 4 shows the performance of the second algorithm with
respect to the block size of the kernel. A significant drop of the
performance occurs if the block size gets smaller than thewarp size
(32 in our case). The result is expected because the multiprocessor
schedules and executes threads in groups of 32 parallel threads
(see [6]).

4. Conclusions

Two type of iterative algorithms for labeling connected
components on a 2D binary grid were described. The first one is
a ‘‘Row–Col Unify’’ algorithm which implements the directional
propagation labeling technique into CUDA. The second one is the
modified version of ‘‘Label Equivalence’’ implemented by Hawick
et al. in [3].

It was shown that there are twomajor advantages of the ‘‘Label
Equivalence’’ algorithm over the ‘‘Row–Col Unify’’ one. The first
advantage is the simpler implementationwhich leads tomuch less
instructions. The second one is concerned with a reduced number
of iterations needed for the procedure to expand the smallest
label on a whole connected component. In the case of a spiral
distribution of occupied cells for a 1024×1024 grid the number of
iterations needed was 514 for the ‘‘Row–Col Unify’’ algorithm and
3 for ‘‘Label Equivalence’’. This demonstrates that the productivity
of the second algorithm depends on the topology weaker than the
productivity of the first one.

In general, the second algorithm is 15 ∼ 35 times faster
compared with the first one. Another advantage of the ‘‘Label
Equivalence’’ algorithm is its capability to be easily extended
to calculate additional integral characteristics of each connected
component, like size, perimeter or area.

Appendix. Label Equivalence procedure listings

See listings.

Listing 1. Labels array initialization

/ / / / I n i t i a l i z a t i o n with unique id ’ s
__global__ void In i t Labe l s (UINT∗ _Labels)
{

UINT id = blockIdx . y∗gridDim . x∗blockDim . x+
blockIdx . x∗blockDim . x+threadIdx . x ;

UINT cy = id / SIZEX ;
UINT cx = id − cy∗SIZEX ;
UINT aPos = (cy+1)∗(SIZEXPAD)+cx+1;
UINT l = _Labels [aPos] ;
l∗=aPos ;
_Labels [aPos] = l ;

}

620 O. Kalentev et al. / J. Parallel Distrib. Comput. 71 (2011) 615–620
Listing 2. Relabeling phase

__global__ void Analysis (UINT∗ _Labels)
{

UINT id = blockIdx . y∗gridDim . x∗blockDim . x+
blockIdx . x∗blockDim . x+threadIdx . x ;

UINT cy = id / SIZEX ;
UINT cx = id − cy∗SIZEX ;
UINT aPos = (cy+1)∗(SIZEXPAD)+cx+1 ;
UINT labe l = _Labels [aPos] ;
i f (l abe l)
{

UINT r=_Labels [l abe l] ;
while (r != labe l)
{

labe l = _Labels [r] ;
r = _Labels [l abe l] ;

}
_Labels [aPos] = labe l ;

}
}

Listing 3. Linking phase

__global__ void Scaning (UINT∗_Labels , UINT∗_IsNotDone)
{

UINT id = blockIdx . y∗gridDim . x∗blockDim . x+
blockIdx . x∗blockDim . x+threadIdx . x ;

UINT cy = id / SIZEX ;
UINT cx = id − cy∗SIZEX ;
UINT aPos = (cy+1)∗(SIZEXPAD)+cx+1 ;
UINT l = _Labels [aPos] ;
i f (l)
{

UINT lw = _Labels [aPos − 1] ;
UINT minl = ULONG_MAX;
i f (lw) minl = lw;
UINT le = _Labels [aPos + 1] ;
i f (le&&le <minl) minl = le ;
UINT l s = _Labels [aPos − SIZEX − 2] ;
i f (l s&&ls <minl) minl = l s ;
UINT ln = _Labels [aPos + SIZEX + 2] ;
i f (ln&&ln <minl) minl = ln ;
i f (minl< l)
{

UINT l l = _Labels [l] ;
_Labels [l] = min(l l , minl) ;
_IsNotDone [0]=1;

}
}

}

Listing 4. Size calculation

/ / Size ca lcu la t ion
UINT n = _CSize [aPos] ;
i f (n&&labe l !=aPos)
{

atomicAdd(&_CSize [labe l] , n) ;
_CSize [aPos] = 0;

}

References

[1] R. Dewar, C. Harris, Parallel computation of cluster properties: application
to 2d percolation, Journal of Physics A: Mathematical and General 20 (1987)
985–993.

[2] http://gpgpu.org/.
[3] K. Hawick, A. Leist, D. Playne, Parallel graph component labelling with GPUs

and CUDA, Parallel Computing 36 (12) (2010) 655–678.
[4] J. Hoshen, R. Kopelman, Percolation and cluster distribution. i. cluster multiple

labeling technique and critical concentration algorithm, Physical Review B 14
(8) (1976) 3438–3445.

[5] M. Manohar, H. Ramapriyan, Connected component labeling of binary images
on amesh connectedmassively parallel processor, Computer Vision, Graphics,
and Image Processing 45 (2) (1989) 133–149.

[6] NVIDIA, Cuda programming guide 3.0, http://developer.download.nvidia.com/
compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf.

[7] NVIDIA, Opencl programming guide 2.3, http://developer.download.nvidia.
com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.
pdf.

[8] W. Pratt, Digital Image Processing: PIKS Inside, John Wiley & Sons Inc., New
York, NY, USA, 2001.

[9] A. Rosenfeld, A. Kak, Digital Picture Processing, Academic Press Inc., Orlando,
FL, USA, 1982.

[10] K. Suzuki, I. Horiba, N. Sugie, Linear-time connected-component labeling based
on sequential local operations, Computer Vision and Image Understanding 89
(1) (2003) 1–23.

[11] K.Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component labeling
algorithms, Pattern Analysis & Applications 12 (2) (2009) 117–135.

Oleksandr Kalentev received his M.S. Degree from
Kharkov State University (Kharkov, Ukraine) in 2001, and
in August 2008 he was awarded a Ph.D. in Physics from
Ernst–Moritz–Arndt University (Greifswald, Germany). He
is currently a Postdoctoral researcher at the Max–Planck-
Institute of Plasma Physics (Greifswald, Germany). His
research interests are computational plasma physics,
plasma surface interaction, modeling of 3D plasma
transport and Particle-in-Cell simulation of the Hall
thruster.

Abha Rai did her Bachelor of Science at Delhi University,
India and Master of Science from the Indian Institute
of Technology, Delhi, India. Afterwards she obtained her
Ph.D. from the Max–Planck Institute of Plasma Physics,
Greifswald, Germany. She worked intensively in the field
of fusion relatedmaterial science. Currently she isworking
on transport in plasmas and GPU application for silver
cluster dynamics.

Stefan Kemnitz has been studying computer science
since 01.09.2008 at the University of Applied Sciences in
Stralsund. He has a special interest in code optimization
and GPU computing.

Ralf Schneider received the diploma degree in Physics
from the Universität Würzburg in 1986, and the Ph.D.
Degree in physics in 1989 from the Universität Bayreuth.
He habilitated 2001 at the Universität Greifswald in
Theoretical Physics, where he also lectures. He has
worked since 1990 as a scientist at the Max–Planck-
Institut für Plasmaphysik in Garching in the tokamak
physics division and since 1998 in the stellarator theory
division in Greifswald. From 1.1.2005 to 31.12.2009
he was Head of the Helmholtz Junior Research Group
‘Materials in contact with plasmas’. Since 1.1.2010 he is

professor for ‘Computational Material Science’ at the Institute of Physics at the
Ernst–Moritz–Arndt University in Greifswald. His research is on computational
physics: from the multi-scale modelling of plasma-wall interactions for fusion
and low temperature plasmas including thrusters to quantum chemistry of
hydrocarbons andmodelling of sediment transport in the Baltic Sea. He is the author
of more than 250 journal articles and book contributions.

http://gpgpu.org/
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_OpenCL_ProgrammingGuide.pdf

	Connected component labeling on a 2D grid using CUDA
	Introduction
	Algorithm description
	Row--Col unification
	Hoshen--Kopelman or Label Equivalence

	Benchmarks and discussion
	Conclusions
	Label Equivalence procedure listings
	References

