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Abstract

In this paper, we propose an efficient technique to de-
tect changes in the geometry of an urban environment us-
ing some images observing its current state. The proposed
method can be used to significantly optimize the process of
updating the 3D model of a city changing over time, by re-
stricting this process to only those areas where changes are
detected. With this application in mind, we designed our
algorithm to specifically detect only structural changes in
the environment, ignoring any changes in its appearance,
and ignoring also all the changes which are not relevant for
update purposes, such as cars, people etc. As a by-product,
the algorithm also provides a coarse geometry of the de-
tected changes. The performance of the proposed method
was tested on four different kinds of urban environments and
compared with two alternative techniques.

1. Introduction
Motivated by the success of online services such as

GoogleEarth and StreetView, as well as by the expecta-
tion of future navigation applications, lot of attention has
gone specifically to developing efficient techniques for re-
constructing static 3D models of urban environments from
imagery and/or range measurements captured from ground-
based vehicles [18, 3], as well as aerial platforms [6, 23].
Recent developments in this area have proven that one can
reach impressive levels of detail in these environments cap-
turing even thin structures like trees and rails [13].

However, while the main structures in an urban scene
remain unchanged for very long periods of time (decades
or even centuries), on the scale of a city new structures are
continuously being erected and old taken down [22]. As
a consequence, any previously reconstructed 3D model be-
comes obsolete rapidly. Considering the vast number of ap-
plications that rely on such data, there is a need to explore
efficient solutions to keep these models consistent with the
current state of the environment.

The naı̈ve solution of updating these models by repeat-
ing the process of data collection and reconstruction on
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Figure 1. Example output of the proposed algorithm. (a) One of
the images used to recover the initial geometry of the scene, shown
in (b). (c) One of the images of the same location captured after
some time: a new structure was placed. (d) Computed volumetric
inconsistency map between the new images (c) and the initial ge-
ometry (b): red indicates inconsistencies. (e) Coarse geometry of
the detected changes computed using our approach.

the whole environment on a regular basis, is not only time
consuming but also very expensive. In fact, while recon-
struction algorithms are getting faster day by day exploiting
parallelism on GPUs [11] or dedicated clusters of comput-
ers [1], the collection of the data, necessary for these algo-
rithms, still needs dedicated setups (multiple cameras, sen-
sors, scanners etc.) mounted on cars, driving around the
city or on aerial vehicles flying over the area of interest,
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with the sole intention of capturing data for reconstruction.
The time and effort involved in this exhaustive data collec-
tion makes this approach impractical for a frequent update.
A way to incrementally update these models which does not
completely discard the existing information, needs to be ex-
plored.

This motivates our effort to leverage the existing 3D
model and some images representing the current state of the
scene, to efficiently determine which areas have undergone
significant changes and which parts of the model are still ac-
curate. In principle, these new images can be recorded from
low resolution consumer cameras mounted on third party
vehicles driving around the city for different purposes: for
instance, postal vans or taxis due to their excellent coverage
across the city. The captured data can then be processed
offline to discover if any changes have occurred in the ex-
plored areas. An update process can then be planned by
adding the locations of the observed changes, to a list of
sites, to be visited during a future run with the scanning ve-
hicle, to capture data with high quality sensors.

2. Related Work
For a broad applicability of the proposed idea, the hard-

ware to be mounted on the vehicles, needs to be kept as
minimal as possible. Therefore, we need to consider that,
for each explored location, only sparse and low resolution
imagery might be available. Detecting structural changes
that may have occurred in an environment from only these
images is not trivial.

Intuitively, a first approach would be to apply multi-view
stereo (MVS) on these images to recover a local updated
geometry of the scene. Geometric changes can then be de-
tected by performing a 3D-to-3D comparison between this
new model and the original one. The accuracy of such a
comparison however, relies on the quality of the obtainable
MVS reconstruction, which may be low in scenarios with
sparse wide baseline imagery.

On the other hand, change detection literature offers a lot
of solutions based on 2D-to-2D comparisons between im-
ages representing the old state of a scene and images repre-
senting its current state [19]. These approaches however are
sensitive to changes in illumination and weather conditions
across the old and the new images. To partially overcome
these issues [17] proposed to learn, from the old images, a
probabilistic appearance model of the 3D scene, to be used
for comparison with the new images. [4] instead, proposed
to detect changes based on the appearance and disappear-
ance of 3D lines detected in the images.

These methods however, focus on generic appearance
changes across the old and new images, which may or may
not correspond to changes in the geometry of the scene.
Since our aim is to keep the geometry of an urban en-
vironment up to date, we need to focus only on geomet-

ric changes that may have occurred, ignoring any changes
in the appearance, such as different paints on a wall, new
posters or new advertisements on boards etc.

In this paper, we propose a technique to detect changes
in the geometry of an environment using a few low resolu-
tion images, observing its current state. The proposed algo-
rithm exploits the existing geometry to detect inconsisten-
cies across these images. In particular, it does not consider
changes in the appearance or changes on objects that are not
relevant for the purpose of keeping the model up to date,
such as changes in vegetation, cars and pedestrians.

3. Algorithm
We assume that the last data acquisition and reconstruc-

tion of the urban environment took place at a certain time
t0, and that Γ indicates the 3D model resulting from such a
procedure. This model will be used as a reference to detect
all the future changes in the environment. At a subsequent
time t1 > t0, a set of images is captured representing the
current state of the urban scene.

These images are first registered with respect to the orig-
inal geometry Γ (Section 3.1). A probabilistic framework
is then used to verify their consistency with respect to Γ
(Section 3.2). In order to ignore changes occurring on non-
relevant parts of the scene, semantic knowledge of the envi-
ronment is incorporated into the proposed framework (Sec-
tion 3.3). As a final and optional step, a coarse update of the
geometry can also be recovered (Section 3.4).

3.1. Image Registration

A lot of research has been devoted to this particular prob-
lem, especially for urban scenes. Both visual [30, 20, 21]
and geometric information [2, 14] have already been ex-
ploited to approximately localize images in an environment.
Once these images are roughly mapped to a location in a
city, classical registration is used to refine the result.

In our scenario, irrespective of whether the original ge-
ometry Γ is built using imagery or range scan data, as long
as there is some texture information available, feature cor-
respondences, like SIFT [16], VIPS [26] or orthophoto-
correspondences [2], can be used to relate the captured im-
ages with Γ. Since, each correspondence is related to a 3D
point in Γ, the images can be registered using Direct Lin-
ear Transform (DLT) followed by a refinement step based
on the reprojection error [9]. In cases where a significant
change covered the majority of the field of view of an im-
age, the number of found correspondences was insufficient
to apply DLT. To recover from this, the images were first
registered relative to each other, on a common coordinate
system, using Structure from Motion [27]. If one or more
of these images saw a sufficient part of the scene that had
not changed, so they could also be registered with Γ using
DLT, then the transformation between the two coordinates
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system was computed and transferred to the remaining im-
ages as well. Clearly, if GPS or other additional information
are available, the registration process becomes simpler.

3.2. Change Detection

To ensure the scalability of the proposed approach to
large environments, the 3D model Γ is first subdivided into
uniformly sized 3D regions and each of those is considered
independently for detecting changes. Let I denote the set of
captured images observing a specific 3D region. It is rea-
sonable to assume that these images are taken around the
same time so that changes in illumination of the environ-
ment can be neglected across them. In a practical situation,
the timestamp can be used to discard the images that do not
comply with the above assumption.

The considered 3D region is discretized into voxels. Let
V represent these voxels and 〈V, E〉 the graph connecting
them, such that each edge eij ∈ E connects only adjacent
voxels (26-neighborhood). We aim to compute a binary la-
beling L = {li}i for each element in V according to the
occurred changes. Specifically, li = 1 indicates the pres-
ence of a change in voxel i, or in other words, it indicates
that the current state of the environment in voxel i is incon-
sistent with the original geometry Γ. On the contrary, li = 0
indicates consistency. To label these voxels, we maximize
the posterior probability of L given the observations I , i.e.,
we maximize p(L|I). Assuming dependence only across
neighbouring voxels, this is equivalent to minimizing the
Gibbs energy (please refer to [25] for details)∑

i

ψi(li) +
∑
eij∈E

ψij(li, lj), (1)

where the unary term ψi(li) represents the log-likelihood
−log(p(I|li)) and the binary term ψij(li, lj) accounts for
the spatial dependencies across neighboring voxels, i.e.,
it is equal to −log(p(li, lj)). We define the binary term
ψij(li, lj) such that it penalizes the assignment of differ-
ent labels to adjacent voxels represented on the same image
with similar colors. More precisely,

ψij(li, lj) = [li 6= lj ] · γ/
(∑

It
||cit − c

j
t ||2 + 1

)
, (2)

where ||cit − c
j
t || is the L2-norm of the difference between

the RGB colors cit and cjt of the two voxels i and j on the
same image It. γ > 0 is a regularization factor.

Concerning the unary term ψi(li), a first approach would
be to store the appearance of each voxel from previous ac-
quisitions, and to compare it with the images in I . Some-
thing similar was explored in [17]. However, this kind of
approach is sensitive to changes between the old and the
current appearance of the scene.

On the contrary, we use the geometry Γ to transfer the
current appearance across the images in I . Previous works

Is It

Mt¬s

G

Figure 2. Image formation process of a 2D inconsistency map
Mt←s computed for the scene shown in Figure 1. Since the new
structure in front of the building, was not modeled by the original
geometry Γ, the resulting image Mt←s reveals some inconsisten-
cies in the corresponding pixels.

like [10, 24, 29] have shown that such an approach can be
used to recover dynamic elements in a scene such as peo-
ple walking in an environment under surveillance. Follow-
ing a similar intuition, for each pair of images in I , say
(It, Is), we render a new image by projecting the colors
of the source image Is into the target image It using the
geometry Γ and the registration parameters for both It and
Is. More precisely, each ray corresponding to a pixel in It,
is cast to Γ and reflected back into the image plane of Is
to retrieve a pixel color. Subsequently, this new image is
compared with the original image It to obtain a sort of 2D
inconsistency map between It and Is, that we will denote
with the symbol Mt←s. Figure 2 depicts this procedure. To
account for possible errors in the registration or in Γ, this
comparison was performed on a 7x7 window as in [24].

Ideally, if the geometry Γ still represents the current state
of the scene observed by the images I , these images should
reproject onto each other correctly, i.e., the 2D inconsis-
tency maps Mt←s should be all zero. On the contrary, if
some Mt←s differ from zero then there is an evidence of a
possible change.

Let M = {Mt←s|∀t, s} be the set of 2D inconsistency
maps obtained from all the possible image pairs in I . From
a probabilistic point of view, M is a random vector linked
deterministically to the images in I , i.e., its conditional
probability distributions p(M |I) and p(I|M) differ from
zero only when all the inconsistency maps Mt←s in M are
obtained with the previously described procedure.

By marginalizing over M , the probability p (I|li), re-
lated to the unary term ψi (li), becomes

p (I|li) =
∑

M
p (I|M, li) p (M |li) ∝ p (M |li) , (3)

2338



where, the proportionality holds since all the terms inside
the sum are zero except for only a specific M . Minimizing
Equation 1 using p (M |li) in place of p (I|li) is therefore
equivalent.

In general, when a change in the geometry occurs, two
evidences of this change are visible in eachMt←s map: one
corresponding to the pixels of the change observed by It,
and the other being the pixels of the change observed by Is
projected into It (see Figure 2). Let πit←s denote the set
of pixels providing these evidences for a specific voxel i.
For tractability, we assume independence in the image for-
mation process for each pixel q in each inconsistency map
Mt←s, therefore,

p (M |li) =
∏
t,s

∏
q∈πit←s

p (Mt←s (q) |li) . (4)

We then define p (Mt←s (q) |li) to be

p (Mt←s (q) |li) =

{
e−

Mt←s(q)2

2σ2 li = 0
U li = 1

. (5)

Equation 5 states that, if a voxel i has not changed since
the last acquisition, all the corresponding pixels in Mt←s
should follow a normal distribution centered around zero.
In other words, in those pixels, the two images It and the
projection of Is into It, should agree. On the contrary, if
voxel i has changed, nothing can be said about the values of
those pixels, and so we approximate their probability with
the least informative one, i.e., the uniform distribution U .

In order to speed up the computation of ψi(li), we reduce
the number of considered image pairs in M by selecting
only those with sufficient overlap in their field of view and
discarding also the symmetric ones.

Since the defined unary and binary terms satisfy the met-
ric requirements, graph cuts [12] was used to minimize
Eq. 1. The obtained labeling L corresponds to a volumet-
ric inconsistency map between the original model Γ and the
current state of the environment. An example of this map
can be seen in Figure 1(d), where only the voxels labeled
as 1 are displayed in red. Voxels are rendered using trans-
parency to emphasize the volumetric nature of the result.

3.3. Change Understanding

By minimizing the energy in Equation 1 we aim to de-
tect all the geometric changes that may have occurred in
the environment since the last acquisition. However, for
the problem being addressed in this paper, some of these
changes might not be relevant and should be discarded by
the algorithm: for instance, people walking on a street, cars
parked in front of buildings, natural vegetation etc. We
avoid detecting such changes by incorporating some seman-
tic knowledge about these objects into our framework.

Let us consider r mutually exclusive classes of objects
{0, 1, . . . , r − 1}. Let class 0 denote relevant objects while
all the other classes denote only irrelevant objects. Let
p (ωqt = c) represent the probability of a pixel q in image
It to belong to an object of a specific class c. We account
for these probabilities in Equation 5 by increasing the un-
certainties of p (Mt←s (q) |li) when either the information
coming from the source or the target image belongs to a
non relevant object. Specifically, we use the same tech-
nique described in the previous section to transfer informa-
tion from a source image Is to the image plane of a target
image It. This time, instead of transferring colors, we trans-
fer the probability p (ωqs = 0) related to the source image.
Let ωqt←s denote the random variable related to such a pro-
jection, i.e., computed by mapping the random variable ωqs
into It.

What we stated before can be formalized by defining the
conditional probability p (Mt←s (q) |li, ωqt , ω

q
t←s) equal to{

p (Mt←s (q) |li) ωqt = 0 ∧ ωqt←s = 0
U otherwise , (6)

where p (Mt←s (q) |li) is defined as in Equation 5 and U
denotes the uniform distribution. By marginalizing over
ωqt and ωqt←s, the new probability distribution of Mt←s (q)
given li, call it p̃ (Mt←s (q) |li), becomes∑

p (Mt←s (q) |li, ωqt , ω
q
t←s) p (ωqt , ω

q
t←s) . (7)

Before substituting Equation 6 into Equation 7, we sim-
plify the notation introducing the symbol Ωqt to indicate
the probability p (ωqt = 0), and the symbol Ωqt←s to indi-
cate the probability p (ωqt←s = 0). Now, assuming indepen-
dence between ωqt and ωqt←s, Equation 7 is rewritten as

(1− ΩqtΩ
q
t←s) · U + ΩqtΩ

q
t←s · p (Mt←s (q) |li) . (8)

In this way, if either Ωqt or Ωqt←s have low values, the prob-
ability distribution of Mt←s (q) given any possible voxel
labeling tends to be uniform, consequently pixel q does not
carry any discriminative information for the voxels.

In our current implementation, we focused on the most
commonly encountered cases of irrelevant changes in urban
scenes namely changes in vegetation, cars and pedestrians.
In order to compute the probabilities p (ωqt = c) for vegeta-
tion we used the same patch based k-nearest-neighbors ap-
proach on both color and edge features as described in [8].
For cars and pedestrians instead, we used the same approach
as presented in [5].

3.4. Model Update

Ideally, once a significant change is detected in the en-
vironment, a new data acquisition with high quality sen-
sors can be planned focusing only on the changed areas.
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(a) (b) (c) (d) (e) (f)
Figure 3. (a) One of the images used to recover the initial geometry, (b) initial geometry, (c) one of the new images, (d) and (e) volumetric
inconsistency maps obtained without and with accounting for the semantic information, (f) update obtained as described in Section 3.4.

(a) (b) (c) (d) (e)
Figure 4. (a) One of the images used to recover the initial geometry, (b) initial geometry, (c) one of the new images, (d) and (e) volumetric
inconsistency maps obtained without and with accounting for the semantic information projected onto the image plane of image (c).

Advanced reconstruction algorithms can then be applied on
this new data to recover an accurate updated 3D model.

In the meanwhile, a coarse geometry of the changes can
be computed as a temporary update to the model, using the
available images. To perform this, the detected 3D inconsis-
tencies are first grouped into clusters using connected com-
ponents, and only clusters with significant sizes are consid-
ered for an update. The volumetric inconsistency maps are
then recomputed for each of these clusters independently, at
a higher resolution.

In order to incorporate the detected changes into the
model, the existing geometry Γ is first converted into its
volumetric representation. Specifically, a voxel is labeled 1
if it is inside Γ, and 0 otherwise. We then apply the XOR
operator between this voxelization and the computed vol-
umetric inconsistency map, considering four cases: (0, 1)
means that an element has been added in the scene, (1, 1)
means that an element has been removed, (0, 0) and (1, 0)
mean that the state of the geometry inside this voxel has not
changed. In the end, the update is obtained by applying the
marching cubes algorithm [15] to the resulting labeling. An
example of such an update is shown in Figure 1(e).

4. Experiments and Discussion
The proposed algorithm was evaluated on four differ-

ent urban environments. In all the experiments, the initial
geometry Γ was recovered using imagery, specifically us-
ing [28]. After some time had elapsed, some new images
of the same locations were captured using a 0.8Mpixel con-
sumer camera from the street side. These images were then
registered with respect to Γ as described in Section 3.1. The
achieved reprojection error for the registration was on an av-
erage between 1.5 and 2 pixels. The scale of the considered

locations varied between 150m2 and 4500m2. The chosen
voxel size was 25cm in each dimension and the size of each
considered 3D region was limited to 1000m2. On an av-
erage, 8 newly captured images were used to compute the
volumetric inconsistency maps for each of these regions.

4.1. Qualitative Evaluation

In the first dataset (Figure 1), we analyzed the case where
a new structure was placed in front of a building inside a
commercial area. As can be seen from the images in Fig-
ure 1(a) and (c), the posters displayed on the windows had
changed between the first and the second round of acquisi-
tion. This is frequent in urban environments, especially in
commercial areas, and would be a serious issue for those
methods which use the appearance from the last acquisi-
tion to detect changes. Since our algorithm uses only the
new set of images for comparison, it correctly detects the
new structure, ignoring the changes on the posters, which
we are not interested in detecting. The resulting volumet-
ric inconsistency map is shown in Figure 1(d). Some vox-
els besides the new structure were also labeled as changed,
however, these get discarded during the update process, as
described in Section 3.4. Figure 1(e) shows the obtained
updated model.

In the second dataset (Figure 3), a speed monitoring de-
vice was placed on a street whose geometry was acquired
two weeks before. Since the images were taken on two sep-
arate days and at different times of the day, the lighting con-
ditions were completely different. Despite this and due to
the robustness offered by the SIFT descriptor, a sufficient
number of correspondences could be established between
the old and the new images, allowing the registration of all
the new images with respect to Γ.
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Figure 5. Result of the reverse experiment performed on the same
dataset of Figure 3. (left) Initial geometry, (right) Volumetric in-
consistency map after the XOR operator: (blue) voxels to be re-
moved, (green) voxels to be added.

Figure 3(d) and 3(e) show a comparison between the
volumetric inconsistency maps obtained without and with
taking semantic information into account, as described in
Section 3.2 and 3.3 respectively. In the former case, since
the geometry of the trees and the bushes changes with time
(due to movement of leaves or seasonal changes), most of
the corresponding voxels were labeled as inconsistent. Us-
ing semantic information instead, these changes were dis-
carded revealing clearly the structure of the device. Fig-
ure 3(f) shows the result obtained after the model update.

A reverse experiment was performed on the same dataset
to evaluate the algorithm behavior on an object removal
case. The previously obtained updated geometry was used
in place of the original model, and the old images without
the device, were used instead of the newly captured images
I . The obtained result is shown in Figure 5, where each
inconsistent voxel is colored in either blue or green to in-
dicate that something has been removed or added, respec-
tively. Inconsistencies were found on the majority of the re-
moved device except for its upper part, which was excluded
because some of the corresponding pixels in the Mt←s’s
images overlapped with the bushes, which had a high prob-
ability of being irrelevant objects.

In the third dataset, we considered a street in a residen-
tial area (Figure 4). At the time of the second acquisition,
multiple structures had been added in front of the building,
covering a considerable part of the field of view of the cap-
tured images. The semantic information helped to discard
irrelevant changes like the car parked behind the new struc-
tures and the bushes. Although the algorithm correctly de-
tected the new structures, very little could be inferred about
the parts of the building occluded by them. In fact, as can
be seen in Figure 4(e), some false positives were detected
around the two windows behind the new structures. This
was due to the fact that these two regions were represented
in only one of the new images and therefore, no 2D incon-
sistency map had information about their true state.

In the fourth dataset (Figure 7), 25 new images were
captured around a big intersection whose geometry was ac-
quired two months before. The environment extends for
about 4500m2 and it was split into four 3D regions. For
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(a) (b)
Figure 6. Change detection ROC for the second (a) and the third
dataset (b): Blue and Green curve: results obtained using our
method with and without accounting for semantic information re-
spectively. Red curve: result obtained using a 3D-to-3D compar-
ison technique. Black curve: result obtained using a 2D-to-2D
comparison technique. (Best viewed in color)

each of these regions, 6 new images were selected and used
for detecting changes. Inconsistencies were detected around
a booth and a stall that were added on the footpath. Some
small and sparse inconsistencies were also detected in the
center of the intersection due to the tram wires and some
poles that were not captured in the initial acquisition, due
to their small size. Note that, in presence of a change some
neighboring voxels are incorrectly labeled as inconsistent if
none of the images give information about them. This is
visible in the top view for the booth whose detected incon-
sistencies exceed the area of the actual change.

4.2. Quantitative Evaluation

For a quantitative evaluation of the proposed algorithm,
we generated a ground-truth by manually segmenting the
occurred changes on each image in I . These were then com-
pared against the masks obtained by projecting the com-
puted volumetric inconsistency maps onto the images I .
This procedure was repeated 50 times for different values
of σ in Equation 5. The fraction of correctly labeled pixels
against the fraction of falsely labeled ones were computed
for all the images in I , and displayed in a ROC curve.

Figure 6 shows the ROC curves obtained for the second
and the third dataset. It is evident that, taking the semantic
information into account (blue curve) decreases the falsely
detected changes significantly. In the third dataset, the per-
formance of the algorithm decreased due to lack of infor-
mation already observed in the previous section.

4.3. Comparison with Alternative Techniques

Since there is no previous work focusing specifically on
geometric changes, we propose two alternative techniques,
and evaluate their performance against our approach.

The most appropriate baseline for comparison is the 3D-
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to-3D approach mentioned in Section 2. We applied multi-
view stereo, precisely PMVS [7]+Poisson reconstruction,
to the newly captured images. Changes were then detected
by thresholding the differences between the depthmaps ob-
tained by rendering this new reconstruction and the original
model Γ, from the point of view of the new images.

When multi-view stereo was able to recover an accurate
3D geometry, the results obtained by the 3D-to-3D method
were comparable with those obtained by running our ap-
proach without accounting for semantic information, see the
red curve in Figure 6(a). On the contrary, in the case when
the images were captured sparsely, with wide baselines or in
the presence of textureless regions, the resulting poor recon-
struction of the scene reduced drastically the discriminative
property of this approach, see Figure 6(b).

We also implemented a 2D-to-2D change detection ap-
proach performing a comparison between the new and the
old images. The same reprojection technique presented in
Section 3.2, was used to compensate for the difference in
viewpoints across the two sets of images. A global color
calibration and a local luminance normalization were per-
formed to compensate for the different lighting conditions.
Despite this last expedient, the differences in appearance
across the two image sets, not corresponding to geometric
changes, biased the results, increasing the number of false
positives (see the black curve in Figure 6).

On a single core working at 2.8GHz, the running
time per region was 35 minutes for the 3D-to-3D method
(MVS+comparison), 5 seconds for the 2D-to-2D method,
and 1 minute for our approach.

5. Conclusions and Future Work
In this paper, we proposed an efficient technique to detect

changes in the geometry of an urban environment that may
have occurred since its last 3D acquisition, using some im-
ages representing its current state. The proposed algorithm
can be used to significantly optimize a model update pro-
cess by restricting the data acquisition and update to only
those areas where changes are detected. Unlike the high
resolution and dense imagery needed to remodel the entire
environment from scratch, we need as few as 8 low resolu-
tion images to detect the possible changes for each region
of size 1000m2.

In the experiments section, we showed that the proposed
method was able to correctly classify changes on four dif-
ferent urban environments. Since only the current images
of the scene were used, the results were not influenced by
changes in illumination across the old and the new images,
such as in Figure 3, or changes in the model texture, such
as the changing posters in Figure 1. Moreover, the use of
semantic information allowed us to ignore the changes cor-
responding to irrelevant objects, as shown in Figure 4. The
algorithm proved to be robust to deal with relatively large

and cluttered environments like the one in Figure 7.
We also proposed two alternative techniques and ana-

lyzed their performance. Even without accounting for se-
mantic information, our approach outperformed these two
techniques. Moreover, in the case when the obtained results
were comparable (as in Figure 6(a) for the 3D-to-3D ap-
proach), this only came at the cost of more computational
time (35 min. vs. 1 min.). This is because, while the pro-
posed method has to consider consistency only with a sin-
gle depth hypothesis, i.e., the original geometry, multi-view
stereo, required by the 3D-to-3D approach, needs to con-
sider all possible depths.

Limitations: The volume detected using our approach
always bounds the actual change. In fact, false positives
may be detected in areas surrounding a change in case these
areas are not seen by at least two images. Moreover, like
other change detection techniques, our approach still suffers
in case of strong reflective surfaces, which may generate
false positives in the Mt←s maps. The computational time
of 1 minute per region is reasonable. However, as a future
extension, the intensive step of solving for Equation 1, can
be triggered only when a significant evidence of change is
observed in the Mt←s images (rare event in the intended
application scenario), reducing the total computational time
drastically.
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