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Abstract—Vision sensors give mobile robots a relatively
cheap means of obtaining rich 3D information of their environ-
ment, but lack the depth information that a laser range finder
can provide. This paper describes a novel composite sensor
approach that combines the information given by an omnidi-

rectional camera and a laser range finder to efficiently solve the
indoor Simultaneous Localization and Mapping problem and
reconstruct a 3D representation of the environment. We report
the results of validating our methodology using a mobile robot
equipped with a 2D laser range finder and an omnidirectional
camera.

I. INTRODUCTION

A key issue in mobile robotics is to give robots the ability

to navigate in an autonomous way in unknown environments

based only on their perception. Thus, a mobile robot must

be equipped with a perception system capable of providing

accurate information of its current location and its surround-

ings, so that the robot is able to reconstruct a reliable and

consistent representation of the environment. There are two

interdependent tasks that any mobile robot has to solve:

localization and mapping. When neither the location of the

robot nor the map are known, both tasks must be performed

concurrently. This problem, known as Simultaneous Local-

ization and Mapping (SLAM), has been largely studied since

the seminal work of Smith and Cheeseman [18], [19], and

is closely related to the development of sensor technology.

Nowadays, laser range finders have replaced sonars when

possible because of its superior efficacy in estimating dis-

tances accurately and their better signal to noise ratio. Many

techniques have been developed to make the most of this

type of sensor for solving the SLAM problem. Since a laser

scan directly provides metric information of the scene, the

localization problem can be stated in terms of an odometry-

based method where the incremental displacement is found

by computing the best rigid transformation that matches two

successive scans. To match two scans it is necessary to link

the individual measurements in one scan with the corre-

sponding measurements in the other scan. This association

can be done either using an intermediate representation of the

laser data (e.g. a polygonal approximation [1]) or directly,

by exploiting the raw data [2].
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Several methods can be found in the literature for 2D

and 3D scan matching. These methods are often categorized

based on their association rule such as feature to feature or

point to point matching. In the feature-based approach [3],

[5], features such as line segments and corners are extracted

from laser scans and then matched against each other. Such

approach requires the identification of appropriate features in

the environment. On the other hand, point to point matching

does not require the environment to be structured or contain

any predefined features.

The Iterative Closest Point [4] (ICP) algorithm is perhaps

the most widely used point to point scan matching method

that works with range sensors. ICP uses a nearest neighbor

association rule to match points, and least squares optimiza-

tion to compute the best transformation between two scans.

Two enhanced methods based on ICP were proposed by Lu

and Milios [6]: the Iterative Matching Range Point (IMRP)

and the Iterative Dual Correspondence (IDC) method. Al-

though ICP and its extensions are fast and in general produce

good results, they are only guaranteed to converge towards

a local minimum and may not always find the correct

transformation. Furthermore, these algorithms suffer from

computational complexity problems when dealing with large-

scale environments because the point to point association

rules they use result in a O(n log(n)) complexity in the

best case (where n is the number of points in a scan). To

overpass these constraints, Diosi and Kleeman proposed the

Polar Scan Matching method [7] which avoids searching

for point associations by simply matching points with the

same bearing. We will discuss this approach in more detail

in Section III.

Despite all the work that has been done to improve

techniques to use lasers to solve the SLAM problem, the use

of 2D lasers alone limits SLAM to planar motion estimation

and does not provide sufficiently rich information to reliably

identify previously explored regions. Vision sensors are a

natural alternative to 2D laser range finders because they

provide richer perceptual information. Many works have

pursued research on vision-based SLAM [9], either relying

on feature-based representations [11] or, more recently, on

a direct approach [10]. However, standard cameras only

have a small field of view (typically between 30◦ and

40◦) and can be easily affected by occlusion. In contrast,
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using a catadioptric camera [21], [22] one can obtain a full

360◦ view of the environment. Image acquisition with these

omnidirectional cameras has many advantages: it can be done

in real time, it is easier to recognize previously observed

places whatever the orientation of the robot is and it is also

less likely that the robot gets stuck when facing a wall or

an obstacle. Thus, vision sensors provide dense and rich

3D information about the environment. Nevertheless, vision

alone does not provide the depth information that a laser

range finder does, which is crucial for solving the localization

problem.

In this paper we describe a hybrid sensor combining the

advantages of a laser range finder and an omnidirectional

camera. In its formulation, our work is close to Biber’s [20].

The major difference is that the process we describe is fully

automated and does not require manual postprocessing by an

operator.

The rest of the paper is organized as follows: in Section II

we describe the experimental testbed used to validate our

methodology and discuss the data acquisition and synchro-

nization process; Section III briefly overviews the Polar Scan

Matching method, while our SLAM approach is presented in

Section IV; in Section V we discuss the merging of omni-

directional images with laser range data to extract vertical

lines and build a 3D representation of the environment; we

end with some concluding remarks in Section VI.

II. EXPERIMENTAL TESTBED

Hannibal (Fig. 1) is our more recent robot from Neobotix

mobile platform (MP-S500). Hannibal is equipped with a

Sick LD-LRS1000 laser, capable of collecting full 360◦

data. The laser head revolves with variable frequency from

5Hz to 10Hz and the angular resolution can be adjusted

up to 1.5◦ at multiples of 0.125◦. The laser has a 30m

range. To perform a 360◦ scan with a resolution of 0.25◦, it
was necessary to reduce the frequency of the rotor to 5Hz,

thus obtaining 1400 data points per scan. The perspective

camera is a progressive-scan CCD camera (Marlin F-131B)

equipped with a telecentric lens and a parabolic mirror (S80

from Remote Reality). Careful calibration of the laser and

the camera is required for merging image and laser data.

We used the Matlab Omnidirectional Calibration Toolbox

developed by Mei [13] to estimate the intrinsic parameters

of the camera and the parameters of the parabolic mirror. For

the calibration between the camera and the laser we used the

method described in [12]. Figure 2 shows the projection of

the laser range measurements on the omnidirectional image

after calibration.

Data acquisition and synchronization. Odometry data arrives

at a frequency of 50Hz, omnidirectional images at 10Hz and

laser measurements at 5Hz. Since data from the different

sensors that we use arrive at different frequencies, we im-

plemented a function to synchronize the data as it comes out

from the robot.

Fig. 1. Hannibal robot experimental testbed

Fig. 2. Laser data projected on an omnidirectional image after calibration.

III. POLAR SCAN MATCHING

Polar Scan Matching (PSM) [7] is a point to point laser

scan matching method that exploits the natural representation

of laser scans in a polar coordinate system to reduce the

complexity of the matching process. As other scan matching

approaches, like the Iterative Closest Point (ICP) method, the

PSM method finds the pose of a laser scan with respect to a

reference scan by performing a gradient descent search for

the transformation that minimizes the square error between

corresponding points. In contrast to other matching methods,

PSM avoids an expensive search for corresponding points by

matching points with the same bearing. The method assumes

the reference and current scans are given as sequences of

range and bearing measurements of the form {rri,φri}ni=1

and {rci,φci}ni=1, respectively, and requires an initial estimate

(xc,yc,θc) for the pose (position and orientation) of the

current scan in the reference scan coordinate frame. The

method may be best described by describing each of its

phases:

a) Preprocessing: To remove outliers and increase the

robustness of the method, the filter developed by A.Victorino

in [23] is first applied to both scans. The measurements

in each resulting scan are then classified into segments

according to simple criteria: two consecutive measurements

not further than a threshold or three measurements lying ap-
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proximately on the same polar line are assigned to the same

segment. Segments consisting of a single point are discarded

(most mixed pixels). To aid the segmentation process, the

maximum range is limited so that two consecutive readings

belonging to the same segment cannot be too far apart.

b) Projection: To compute the error in the pose esti-

mate of the current scan the method needs to know how

the current scan would have been measured from the point

of view of the reference scan. The projection of the current

scan into the reference scan coordinate frame is a sequence

of measurements (r′ci,θ
′
ci)

n
i=1 computed as follows

r′ci =
√

(rci cos(θc + φci)+ xc)2 +(rci sin(θc + φci)+ yc)2 (1)

θ ′ci = atan2(rci sin(θc + φci)+ yc,rci cos(θc + φci)+ xc) (2)

The bearings of the above sequence do not necessarily

coincide with bearings where the laser would have sampled a

reading. A range measurement r
′′
ci is computed for each sam-

ple bearing by linear interpolation among points belonging

to a same segment. Points that would have been occluded are

not taken into account, only the smallest range measurement

for a bearing is kept.

c) Translation and Orientation Estimation: The

method alternates between translation and orientation

estimation. After making a correction to the pose estimate,

the projection phase is repeated with the corrected estimate.

The process stops when the magnitude of the last position

and orientation correction is smaller than a given threshold,

hopefully indicating that a minimum has been reached.

Translation is estimated using a standard weighted least

squares method. A correction (∆xc,∆yc) to the position

estimate is found by minimizing the weighted sum of the

square range residuals ∑n
i=1wi(rri − r′′ci)

2 while leaving

orientation unchanged. The weights are computed as

recommended by Dudek and Jenkin [8],

wi =
c2

(rri− r′′ci)
2 + c2

(3)

Orientation is estimated by computing the average range

residual for 1◦ shifts of the current scan in a ±20◦ window.
The new orientation estimate is found by fitting a parabola

to the shift with the minimum average error and its left and

right neighbors.

The implementation of the PSM method provided by Diosi

is tailored to a laser with 1◦ angular resolution and 180◦

bearing range. These assumptions are used when transform-

ing sample bearings from radians to indexes into arrays and

back. We generalized Diosi’s implementation to lift these as-

sumptions. Our implementation is parametrized so that it can

deal with lasers with arbitrary angular resolution and bearing

range. In addition, instead of just returning the pose estimate

at the moment the algorithm stops, our implementation keeps

record of the estimate with the minimum error and returns

it as a result.

IV. LOCAL AND GLOBAL MAPS WITH SLAM

AFFINE-TRANSFORMATION(x,y,θ )

return







cosθ −sinθ 0 x
sinθ cosθ 0 y
0 0 1 0
0 0 0 1







Fig. 3. Affine transformation for a translation (x,y) and a counterclockwise
rotation around the origin by an angle θ .

GLOBAL-MAP(scan[N])

1 SR← scan[1]
2 T1← AFFINE-TRANSFORMATION(SR.x,SR.y,SR.θ )
3 T3← T1×TL
4 Map← APPLY-TRANSFORMATION(T3,SR)
5 for i← 2 to N
6 SC← scan[i]
7 T2← AFFINE-TRANSFORMATION(SC .x,SC.y,SC .θ )

8 T ← T−1L ×T−11 ×T2×TL
9 (x,y,θ )← (T(1,4),T(2,4),atan2(T(2,1),T(2,2)))

10 (x,y,θ )← PSM(SR,SC,x,y,θ )
11 T ′3 ← AFFINE-TRANSFORMATION(x,y,θ )
12 T3← T3×T ′3
13 Map←Map∪APPLY-TRANSFORMATION(T3,SC)
14 SR← SC
15 T1← T2
16 return Map

Fig. 4. Pseudocode of the procedure used to incrementally build a global
map from a sequence of laser range scans with odometry information.

We build 2D local maps of the environment using the

enhanced PSM implementation described in the previous

section. Local maps will be used both, in the localization

process and for mapping the environment. Later, these maps

will be used in SLAM to reconstruct a 2D global map from

which it is possible to recover the pose of the robot at each

instant.

Let TL be the rigid transformation between the laser

coordinate frame and the robot coordinate frame. We fix as a

global coordinate frame the coordinate frame of the odometry

data. Let (x,y,θ ) be the current position of the laser scan

coordinate frame. The affine transformation matrix from the

laser coordinate frame to the global coordinate frame is given

by the procedure in Fig. 3.

We use the procedure in Fig. 4 to build a global map

and reconstruct the path of the robot from a sequence of

laser range scans with associated odometry data. We begin

by taking the first scan in the sequence as the reference scan

SR. Initially, the map consists only of the points in the scan

SR represented in the global coordinate frame, but it will

be incrementally enriched at each iteration of the loop. We

keep at every moment a transformation matrix T3, from the

coordinate frame of the laser in the reference scan frame

to the global coordinate frame. At the beginning of each

iteration we take the next scan in the sequence to update the

current scan SC. We then use the odometry data to obtain an

initial estimate for the pose of the laser in the current scan

with respect to the reference scan coordinate frame. We feed

this estimate to the PSM procedure described in the previous
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section, and get as a result a new estimate of the pose. Using

this new estimate, we update the T3 matrix, transform the

points in the current scan to the global coordinate frame,

and add them to the global map. The current scan becomes

then the reference scan and the whole process is repeated

again.

Because the short-term odometry of the robot when trav-

eling on a flat surface is relatively accurate, in practice we

do not need to use scan matching to compute the pose of

the robot in every scan. Instead, we only use scan matching

to get a better estimate of the pose of the robot when it has

traveled a certain distance or rotated a certain angle, or when

a certain lapse of time has passed since the last time scan

matching was used.

Using the results obtained using the PSM algorithm, the

odometry data of the whole sequence can be recomputed.

It suffices to multiply after each iteration matrix T3 by the

transformation matrix T−1L , which gives the transformation

matrix from the robot (not the laser) coordinate frame of

the current scan to the global frame. The pose (x,y,θ )
can be readily extracted from this last matrix. Figure 5

shows the position of the robot at several instants in the

sequence as given by the original odometry data (in red)

and as computed by SLAM (in green) superimposed on the

generated map. The sequence was obtained by manually

commanding the robot to explore the ground floor of a

building in a closed loop. Note that although we did not

perform closed-loop detection or corrections of any kind,

the results are quite satisfactory. The recomputed odometry

represents a big improvement over the original odometry that

even drifts out of the building.

V. VERTICAL LINE EXTRACTION FROM

OMNIDIRECTIONAL IMAGES AND LASER SCANS

This section explains the procedure we developed to

extract vertical lines from omnidirectional images and to

estimate their 3D positions using information from the laser

range finder. We first project the laser information on the

omnidirectional image in order to get an approximation of the

depth information missing in the image. To achieve that, the

unified projection model defined in [15] is applied, which is

an extension of Geyer’s [17] and Barreto’s [16] models. The

generalized camera projection matrix K is computed from

the generalized focal lengths (γ1,γ2) and the principal point

(u0,v0):

K =





γ1 0 u0
0 γ2 v0
0 0 1





Using K, we can compute the normalized coordinates of a

point p in the image (represented in the camera coordinate

frame) as m = [x,y,1]T = K−1p. We then compute X s =
[Xs,Ys,Zs] as follows (see Fig 6):

X s =











ξ+
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ 2)(x2+y2)

x2+y2+1
− ξ











p

X

Xs

~zm

~xs

~zs

~ymRm

Rp

Cm ~xm

~ys

Cp

K

πm

ξ

1

m

πp

Fig. 6. Unified projection model

Fig. 7. Detection of vertical lines and the corresponding laser measure-
ments.

where ξ is the mirror parameter, which is equal to 1 for

parabolic mirrors.

We then extract the quasi-radial lines in the scene, cor-

responding to approximately vertical features (e.g. walls,

facades, doors, windows). As we set the camera-mirror

system perpendicular to the floor where the robot moves, we

can guarantee that vertical lines are approximately mapped to

radial lines on the camera image plane. To extract prominent

vertical lines, we first apply the Canny edge detector to obtain

a binary edge image and then apply the Hough transform to

detect lines in the binary image. To extract vertical lines we

compute the image center (i.e, where all radial lines intersect

in) using a circle detector, and filter out the lines detected

by the Hough transform that do not lie on radial directions.

As shown in Fig. 7, by overlapping in the omnidirectional

image the laser scan data and the radial lines we can find

the laser range measurements corresponding to vertical lines.

This gives us the depth information missing. We detect those

laser measurements and save them in the original camera

frame together with its corresponding point in the image

plane (which also corresponds to a point on a vertical line).
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Fig. 5. Global map obtained by SLAM together with the original and recomputed position of the robot at several key instants.

Let Ms
0 = [X s

0 ,Y
s
0 ,0]

T be a laser measurement lying on

a vertical line expressed in the camera coordinate frame,

∆ a 3D plane defined in the camera frame, and ms
i =

[xsi ,y
s
i ,z

s
i ]
T
, i = 1,2 the endpoints of the vertical line where

the laser measurement lies expressed in the sphere (mirror)

coordinate frame. These last points are computed by invert-

ing the projections of the unified model of Fig. 6.

We reconstruct the 3D lines as follows. Let us be the

director vector. For every Ms
i ∈ ∆, the vector

−−−→
Ms

0M
s
i is

colinear to us. Thus,

−−−→
Ms

0M
s
i = λiu

s =⇒







Xi−X s
0 = λiu

s
x

Yi−Y s
0 = λiu

s
y

Zi−Zs
0 = λiu

s
z

(4)

−−→
OMs

i = µi

−−−→
Osmi =⇒







Xi = µix
s
i

Yi = µiy
s
i

Zi = µiz
s
i

(5)

Substituting (5) in (4) we get the following system of

equations






µix
s
i −X s

0 = λiu
s
x

µiy
s
i −Y s

0 = λiu
s
y

µiz
s
i −Zs

0 = λiu
s
z

(6)

If ∆ is a vertical plane in the sphere frame Rs, i.e. u
s =

[0,0,1]T , then:






µix
s
i −X s

0 = 0

µiy
s
i −Y s

0 = 0

µiz
s
i −Zs

0 = λi

(7)

Because we know [xsi ,y
s
i ,z

s
i ]
T and [X s

0 ,Y
s
0 ,0]T , we can com-

pute µi for each i. We can then substitute in Equation (5) to

obtain the extreme points of the lines in ∆. Finally, we apply
the homogeneous transformation to transform the coordinates

of those points to the global coordinate system and trace the

3D lines. The result is shown in Fig. 8. Observe how the

vertical lines are consistent with the 2D map.

Fig. 8. Environment with 3D lines

VI. DISCUSSION AND PERSPECTIVES

This paper describes an original composite sensor ap-

proach that takes advantage of the information given by

an omnidirectional camera and a laser range finder to ef-

ficiently solve the Simultaneous Localization and Mapping

problem for indoor environments, and to reconstruct a 3D

representation of the environment. The accompanying video

illustrates the incremental generation of a 2D map and the

estimation of the robot trajectory alongside the laser range

data projected on omnidirectional images. It also shows the

vertical lines detected in the images and their mapping into

a 3D reconstruction of the environment.

In order to show the robustness of the methodology, we

tested the algorithm with a sequence taken in a different in-

door environment with our old robot Anis which is equipped

with the same catadioptric camera and an AccuRange 4000

2D laser range finder. This laser is composed of a laser

telemeter with a rotating mirror that allows measurements

of points on 360◦, except for an occlusion cone of ap-

proximately 30◦ caused by the assembly of the mirror. The

resulting 2D map is shown in Figure 9. The vertical line

extraction and the reconstruction of the 3D environment were
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Fig. 9. Global Map obtained by SLAM in Borel Building

consistent as well.

The SLAM problem has been solved using many different

approaches, however some important problems need to be

addressed that are often directly linked to the sensors used.

Laser range finders cannot help in evaluating the translation

of a robot moving in a straight line in a corridor. Mapping in

dynamic environments is also hard with only laser data. On

the other hand, using visual sensors alone introduces issues

such as propagating correctly the scale factor, initializing

the range when using a monocular sensor, and merging data

when using multiples cameras.

In our approach, the laser provides metric information of

the environment that helps to fix a scale factor (removing

the difficulty of propagating the scale factor) without the

need to use multiple cameras. Throughout the paper we

have identified several advantages of combining laser and

visual sensors. Our experimental results are encouraging and

give us valuable insight into the possibilities offered by this

composite sensor approach.

We have considered several research directions that could

be pursued to improve the results obtained so far. We have

thought about extending our algorithm with loop closure de-

tection. This would allow the algorithm to detect previously

visited locations and improve the accuracy of mapping and

the precision in the estimation of the robot pose. Being able

to detect previously visited places is of great importance to

solve the problem of global localization and to recover the

robot from kidnapping, a situation occurring when the robot

is displaced by something out of its control (e.g. taking an

elevator, being transported from one location to another).

Therefore, solving the loop closure problem will not only

improve SLAM performance, but will as well enable new

capabilities.

Further work will concentrate on an extension of the

PSM algorithm to exploit the information about vertical lines

detected using omnidirectional images. Segmentation of the

ground (floor) to extract planes on the image would allow

a dense (textured) 3D reconstruction by warping the images

onto the geometric model of the world. Finally, we believe

the general approach can be extended to solve the full six

degrees of freedom (6DOF) SLAM problem, which is an

active field of research.
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