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Abstract: The authors propose a vision-based automatic system to detect preceding vehicles on the highway under various lighting
and different weather conditions. To adapt to different characteristics of vehicle appearance under various lighting conditions, four
cues including underneath shadow, vertical edge, symmetry and taillight are fused for the vehicle detection. The authors achieve
this goal by generating probability distribution of vehicle under particle filter framework through the processes of initial sampling,
propagation, observation, cue fusion and evaluation. Unlike normal particle filter focusing on single target distribution in a state
space, the authors detect multiple vehicles with a single particle filter through a high-level tracking strategy using clustering. In
addition, the data-driven initial sampling technique helps the system detect new objects and prevent the multi-modal
distribution from collapsing to the local maxima. Experiments demonstrate the effectiveness of the proposed system.
1 Introduction

Vision-based driver assistance systems (DAS) [1–4] have
recently become popular because of the superior power of
the environment description and the low price. The
applications include lane recognition, night view system,
obstacle avoidance etc. This study focuses on the vision-
based DAS using the particle filter with a high-level
tracking technique. Although the vehicle pattern is specific
and regular, it is still hard to recognise them from natural
scenes.

There are numerous approaches proposed for vehicle
detection. Among the day time vehicle detection scenarios,
there are three major categories: knowledge-based [5–7],
appearance-based [2, 8–11] and template-based approaches
[12, 13]. Knowledge-based approach, without the necessity
of the training process, is more efficient and more general
than template-based or appearance-based approaches;
efficiency and generality are important in real-time
applications. Thus, we choose a knowledge-based scheme.

Among the knowledge-based approaches, the intensity-
based symmetry method [5–7] is often used in the car-
following situation, as the rear of a vehicle is typically
symmetrical. In the ARGO project, Broggi et al. [14]
produced a symmetry map by combining the grey-level
information and the horizontal-edge symmetry attributes.
Then, the position of the vehicle’s bottom is found by
fitting a template to the edge map. This method is limited
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to, however, the strict car-following situations or the
symmetrical object. Besides, it may cause false alarms by
the symmetrical objects, for example, fences.

In the low-light condition, different cues are used. Chern
and Hou [15] proposed a monocular vision system on the
highway at night. Wang et al. [16] proposed a vehicle
detection system based on the taillight detection. The
detection of taillights is through blob template of taillight in
the night scene. However, the usage of single cue is not
robust enough for vehicle detection under various lighting
conditions. Accordingly, there are some approaches using
multiple cues. Huang et al. [17] employed vertical edge,
underneath shadow and symmetry as the prior knowledge
of the vehicle. Tao and Debrunner [18] used sequential
Monte Carlo to fuse line and colour features for the vehicle.
Martin and Bernt [19] argued that applying multiple cue
integration with democratic integration can improve
robustness of visual tracking. The effectiveness of the
democratic integration with CONDENSATION to achieve
the goal of multi-hypothesis tracking is shown in [20].

Particle filter, known as CONDENSATION [20], is widely
used in the areas of visual tracking [20–28]. It can adequately
model the multi-modal and non-Gaussian distribution. It is
not only easier to track multiple objects but it is also
simpler to integrate multiple vision cues. We propose a way
to integrate these features intelligently and effectively.

To achieve multiple target tracking, we need to track a
multi-modal density distribution. There are three major
1
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classes of approaches dealing with multi-target tracking in the
literatures [21, 23]: (i) one particle filter for each target [23],
(ii) single particle filter for all targets modelled in the state
space [21] and (iii) single particle filter without
correspondence modelling. One particle filter for each target
is an intuitive approach, but often converges to a local
maximum when two similar objects intersect. Modelling
every target in the state space explicitly can help distinguish
occluded targets. However, two issues make it improper for
real-world cases; the number of targets is assumed to be
constant and the state space grows exponentially with
respect to the target number. Using one particle filter for all
targets without correspondence modelling is an efficient
solution; the number of particles and the size of the state space
are less than those of the other two. All we need to do for this
scheme is to solve data association of the targets in the multi-
modal distribution. To extend such a particle filter approach to
its multi-target tracking version, we cluster particles into
several groups by the Basic Sequential Algorithm
Scheme (BSAS) [29], an efficient clustering algorithm
generating effective results. After clustering, we use a Kalman
filter [30] with constant velocity model to accomplish the
high-level tracking. The goal of the multi-target tracking is
achieved without heavy computational burden.

The hereby proposed vehicle detection and tracking
architecture is shown in Fig. 1. The detection and tracking
algorithms are highly coupled using a particle filter
framework and a high-level tracking module. First, we
enhance the initial sampling for earlier convergence and use
multiple cues to improve the robustness of vehicle
detection. The data-driven initial sampling draws particles
from high-likelihood area instead of randomly from the
whole state space; it is important for fast convergence when
a new target appears. The system can redistribute particles
into multi-modal distribution; otherwise, multi-modal
distribution may collapse into local maxima. Second, in
order to apply this vehicle tracking algorithm under various
lighting conditions, we use multiple cues for each
candidate. These cues are integrated by the cue fusion
procedure to obtain the final likelihood of the candidate. In
2
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order to extend the particle filter into to accommodate
multiple targets, the aforementioned BSAS is adopted to
cluster the particles. After an iteration of the particle filter
algorithm, the most probable candidate will propagate to the
next frame through a high-level tracking technique.

The rest of the paper is organised as follows. Section 2
shows the first two processes, initial sampling and
propagation, of our system. In Section 3, both observation
and evaluation will be described. Section 4 shows the
detection and tracking mechanisms of our system.
Experiments are shown in Section 5. Finally, we conclude
the paper in Section 6.

2 Particle filter and hypothesis generation

2.1 Introduction to particle filters

Particle filter, a non-parametric Bayesian filter, is generally
used to generate the density of the state space through
iterations using Bayes’ rule under Markov assumptions. It
can deal with general distributions or multi-modal
distributions by relaxing the Gaussian assumptions. A
general Bayesian filter maximises the posterior term using
Bayes’ rule as shown in the following equation

p(xt|Z t) = hp(zt|xt)

∫
p(xt|xt−1)p(xt−1|Z t−1)dxt−1 (1)

The posterior term, p(xt|Zt), is the conditional probability of
state vector xt given the measurement history Zt ¼ Zt21 < zt;
the measurement at the time instance t is denoted as zt and
the history of the measurement from the beginning to the
time instance t 2 1 is denoted as Zt21 ¼ {z, . . . , zt21}. h is
the normalisation constant. p(zt|xt) is also known as the
likelihood probability of the measurement zt given the state
vector xt. p(xt|xt21) is the state transition probability without
knowing current measurement. Equation (1) can be taken
into iterative steps for deriving the current state. In the
particle filter framework, the particles ‘evolve’ to the best
approximation distribution using Bayes’ rule. Each particle
Fig. 1 Architecture of the vehicle detection and tracking procedure
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is encoded with a state vector and its weight to represent a
hypothesis with confidence. The re-sampling of the particle
filter, generation of particles, is done by drawing particles
according to their associated weights at the previous time
instance; the higher the weight is, the higher the probability
of ‘survival’ the particle is with.

If the number of particles is close to infinity, the final
estimation will converge to the true posterior density. In
general, the computational complexity of the particle
filtering is linearly proportional to n, the number of particles.
Owing to efficiency, we prefer not to use too many particles.
In our experiments, the number is less than 2000.

Following the manner of a Bayesian filter, particle filter
framework ‘observes’ and ‘propagates’ particles according
to the probabilities p(zt|xt) and p(xt|xt21), respectively. The
final state distribution is ‘estimated’ by the final particle
state vectors and weights.

2.2 Data-driven initial sampling

These ‘particles’ in particle filters are all possible candidates
of a vehicle. A vehicle is represented by a vector described as
follows

xk
t = (ut, vt, wt, ht, Dut, Dvt, Dwt)

t

(ut, vt): (U , V ) coordinates of the top left corner

(wt, ht): (width, height) of the sample

(Dut, Dvt, Dwt) = (ut − ut−1, vt − vt−1, wt − wt−1)

(2)

where xk is the state vector of the kth vehicle candidate at time
step t. The schematic description of these notations is shown
in Fig. 2a. Without loss of generality, Dht is assumed to be
proportional to Dwt in the on-road vehicle cases and is hence
omitted in our state vector. The measurement vector at time
step t is defined as zt = (zim

t , zun
t , zve

t , ztl
t )t which includes

image zim
t , vertical edge map zve

t , underneath shadow map zun
t

and taillight map ztl
t . We use the Sobel edge detector with

orientation constraint to generate vertical edge map, that is,
only vertical edge pixels are kept. The underneath shadow
map is generated by horizontal orientation constraints and an
intensity threshold, that is, only dark horizontal edges are
kept. We generate taillight map by thresholds in the ‘R–B
image’ described by Wang et al. [16], where headlights and
street lamp with white colour are restrained. Then, the set of
particles Xt21 at time t 2 1can be generated by assigning each
particle a weight corresponding to the likelihood probability
as shown below

X t−1 = {kx1
t−1, w1

t−1l, kx2
t−1, w2

t−1l, . . . , kxn
t−1, wn

t−1l} (3)

Fig. 2 Schematic description of notations

a Vehicle candidate vector example
b Vehicle candidate for evaluating the likelihood. The rectangle
abdc denotes a vehicle candidate
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where kxk
t−1, wk

t−1l is the kth particle at time t 2 1, with
state vector xk

t21, the associated weight wk
t−1, and the total

number of particles equals to n. Without loss of generality, the
particle weights are arranged in descending order, that is,
∀k, j [ N , 1≤ k , j≤ n⇒wk

t−1 ≥wj
t−1.

If the particles are well distributed around vehicles, the
particles will converge to the solutions soon. The ‘initial
guess’ is important for a system to converge more quickly.
Similar to the work proposed by Isard and Blake [31], we
use the data-driven technique to provide a better guess of
initial sampling by drawing particles according to the
currently observed image. The areas in the image with the
underneath shadow cue and the vertical cue are initially
considered as particles for further inference in particle
filtering framework. At each round, 10% of the particles are
generated from data-driven initial sampling, and 90% of the
particles are derived from the previous time step. The 10%
new particles help detect new targets and make the system
converge faster.

2.3 Propagation

In the propagation stage, the particles will propagate to the
new locations as a new ‘guess’. This stage consists of two
steps, namely, deterministic drift and randomised diffusion.
In the deterministic drift step, we use a constant velocity
model for each particle, since the relative velocity of
vehicles during a short time interval can be regarded as a
constant. Thus, we add the velocity component to the centre
coordinate of the particle set to predict the state of particle
at next time step. The state vector after deterministic drift,
namely, x′t, can be expressed as

x′t = ut−1 + Dut−1, vt−1 + Dvt−1, wt + Dwt−1,

(

ht + Dwt−1

ht−1

wt−1

, Dut−1, Dvt−1, Dwt−1

)t

(4)

Note that particles with identical state vector will move to the
same location. Next, we randomly diffuse, by moving slightly
every element of the vehicle candidate. This is important
since we cannot predict the true dynamic model of the
target, and random move can give the particle a chance to
shift to the correct state.

x̃t = x′t + N(0, S) (5)

where x̃t in (5) is the state vector after random diffusion, and
N(0, S) is a normal distribution noise with zero mean and
covariance matrix S. After this step, we predict the possible
locations of the vehicles at the current time instant by
drifting and diffusing the estimated particles at the previous
time.

3 Hypothesis verification

According to observations, there are many characteristics
of a vehicle. We refer to these characteristics as ‘cues’ for
measuring every candidate. We assign a weight to every
candidate by evaluating its corresponding likelihood
probability. The more similar the candidate is to a vehicle
pattern, the higher the likelihood score of the corresponding
candidate is.
3
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3.1 Observations

Each particle is associated with a likelihood probability
according to the measurement vectors as shown in Fig. 3.
The likelihood of each measurement can be evaluated by
the currently observed image with respect to the four cues,
namely, vertical edge, underneath shadow, symmetry and
taillight. We will explain how each cue is evaluated as
follows. The notations are defined in a schematic form as
shown in Fig. 2b. The rectangle abdc in Fig. 2b denotes a
vehicle candidate.

3.1.1 Vertical edge cue: A vehicle candidate will contain
edge pixels on the vertical boundaries if the bounding box fits
the vehicle properly [17]. We define the likelihood of a
vertical edge cue as the number of total vertical edge pixels
divided by vertical boundaries. The exponential term of the
likelihood probability can be expressed as follows

gv(zt|xt) =
Vertical edge pixels on ac + bd

ac + bd
(6)

The function gv(zt|xt) will return value 1 for ideal case, that is,
ac + bd in Fig. 2b are fully overlapped with vertical edge
pixels. The likelihood probability in (7) is proportional to
the exponential of the function gv(zt|xt), where the hv is a
normalising term.

p(v)(zt|xt) =
1

hv
exp (gv(zt|xt)

)

⇒ p(v)(zt|xt)/ exp (gv(zt|xt)) (7)

3.1.2 Underneath shadow cue: The shadow under the
vehicle is a strong feature for a vehicle [17]. We use
horizontal edge detection with low intensity to locate the
underneath pixels. The ratio between the number of
underneath shadow pixels is computed and the bottom
boundary of the vehicle candidate, whose formal definition
is expressed in (8). The underneath shadow cue will return

Fig. 3 Measurement vectors

a Original image zt
im

b Vertical edge map zt
ve

c Underneath map zt
un

d Taillight map zt
tl
4
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0 if there is no underneath pixel overlapped with the edge
cd in Fig. 2b. Equation (9) shows, the likelihood
probability of the underneath cue is defined in proportion to
the exponential of the function gu(zun

t |xt).

gu(zun
t |xt) =

Underneath pixels on cd

cd
(8)

p(zun
t |xt) =

1

hu
exp(gu(zun

t |xt)

)

⇒ p(zun
t |xt)/ exp(gu(zun

t |xt)) (9)

3.1.3 Taillight cue: In the night scene, taillights are the
most significant feature for a vehicle [15, 16]. The taillight
will appear as a blob in the night scene image. We assume
that there are two taillights in the vehicle candidate
bounding box. We search two taillight spots in the
bounding box as [16]; bright blobs in the R–B image are
extracted as candidates. We calculate the distance between
two farthest taillights if there are more than two possible
ones. The taillight cue uses the taillight distance in the
bounding box divided by the width of the box to represent
the likelihood of the vehicle candidate, denoted as gtl(ztl

t |xt)
which is shown in the following equation

gtl(ztl
t |xt) =

Taillight distance

w
(10)

It will return a high value if the two taillight spots are close to
the vertical edges of the bounding box as shown in Fig. 2b.
The exponential of the taillight cue provides a proportional
term of the likelihood probability of such cue

p(ztl
t |xt) =

1

htl
exp(gtl(ztl

t |xt))

⇒ p(ztl
t |xt)/ exp(gtl(zt|xt)) (11)

where htl is the normalising term.

3.1.4 Symmetry cue: Horizontal symmetry in the rear part
is a property of a vehicle [14]. We define a symmetry cue
function within the bounding box as the ratio between the
total symmetry pixels and the bounding box width. The
formula of this symmetry cue and the associated likelihood
probability can be expressed as follows

gs(zim
t |xt) =

S
w/2
i=1S

h
j=1k(i, j)

(wh/2)
(12)

k(i, j) = 1, if
I(i, j) − I(w − i, j)

I(i, j)

∣∣∣∣
∣∣∣∣ , usym

0, else

⎧⎨
⎩ (13)

p(zim
t |xt) =

1

hs
exp(gs(zim

t |xt))

⇒ p(zim
t |xt)/ exp(gs(zim

t |xt)) (14)

where the notation I(i, j) here means the intensity of the image
at the coordinate (i, j) with respect to the top left corner point
of the bounding box, h is the bounding box height, w is the
bounding box width, usym is the threshold for detecting a
symmetry pair and hs is the normalising term. Note that the
function k(i, j) will return value 1 if the two intensities of
IET Intell. Transp. Syst., 2012, Vol. 6, Iss. 1, pp. 1–8
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the corresponding pixel pair are similar enough. The
symmetry cue function defined in (12) refers to the ratio
between the total intensity-wise similar corresponding pixel
pairs and the half-width of the bounding box.

3.2 Cue fusion

We will use only one integrated likelihood density for one
vehicle candidate, although we may obtain multi-modal
observations. It should be conceivable that cue fusion helps
to build a robust DAS under various lighting conditions.
For example, the underneath shadow cue is good at day
time whereas the taillight cue is good at night time. To
integrate four likelihood functions derived from four cues
aforementioned, we can evaluate the weighted likelihood
p(zi

t|xi
t) as multiplications of likelihood of every cue and a

constant h based on a simplified assumption that each cue
is conditionally independent of the other cue.

p(zi
t|xi

t) = hp(zve
t |xi

t)p(zun
t |xi

t)p(ztl
t |xi

t)p(zim
t |xi

t) (15)

By rewriting (15) into the exponential term, we obtain

p(zi
t|xi

t)/ exp(W v
t gv(zve

t |xt) + W u
t gu(zun

t |xt)

+ W tl
t gtl(ztl

t |xt) + W s
t gs(zim

t |xt)) (16)

where W i
t is the fusion weight of the cue i at time step t.

Equivalently speaking, the fused likelihood probability is
equal to the exponential term of the weighted sum of every
cue. The higher the confidence of a cue is, the higher the
fusion weight of the cue assigned. For example, we use 0.3,
0.3, 0.1 and 0.3 for vertical edge, underneath shadow,
taillight and symmetry cue in daytime scenes.

4 Vehicle detection and tracking

After cue fusion stage, we have examined the particles in the
current time step and have got the likelihood of each particle.
Each target produces several particles in the state space. To
evaluate the final belief of the state, we perform the data
associations with particles. Then, we track each target with
one Kalman filter. The details are shown as follows.

4.1 Evaluation of the particle filter

Isard and Blake [20] chose weighted sum of particles to
represent the final belief for single target tracking. It is not
adequate for our system, since the target distribution is a
multi-modal distribution which corresponds to multiple
objects in our case. The modes or local maxima are the
most possible solutions at the current time. As we only
draw finite number of particles in the state space, we can
hardly find the maximum likelihood particles as the
best belief.

Under such consideration, we approximate the belief state
by computing the weighted mean of particles belonging to
one mode. Thus, we cluster particles first, and then compute
the weighted mean for the final belief. In our case, the
number of cluster is unknown so that the traditional
supervised clustering techniques like k-means are not
applicable. Thus, an unsupervised clustering technique
named BSAS [29] is adopted.

The procedure of the BSAS is described as follows.
Generate the first cluster at the beginning. For all other
IET Intell. Transp. Syst., 2012, Vol. 6, Iss. 1, pp. 1–8
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particles, check the distance between the existing clusters
and the particles. If the shortest distance between the input
particle and a cluster is greater than Cd and the number of
total number of clusters is less than Nmax, construct a new
cluster with this particle. Otherwise, find the closest cluster
and put this particle in. Given Xt, a set of particles at time
t, we can form the clusters St = {s1, s2, . . . , sNt }, where si

denotes the ith cluster, and Nt the number of clusters at time
t. The flow chart of a BSAS is shown in Fig. 4, where Cd is
the threshold of cluster radius and Nmax is the maximum
number of clusters.

One of the issues of the BSAS algorithm is that the
sequence of input will significantly affect the clustering
results. The first input particle always forms a cluster, and
then the other particles are merged with the closest cluster
among clusters already formed. Therefore, we need to
cluster meaningful particles first. This gives us the idea to
improve the solution of the BSAS, that is, to feed the
solutions of the previous time step first. At the beginning,
the input sequence is randomly chosen to form clusters. At
later time steps, instead of random input sequence, we feed
the previous cluster first to generate meaningful clusters. As
the distance between these particles is large (particles
with distance within Cd will be clustered) and they are
meaningful (solutions from the previous time step), the
results of the clustering will be more stable.

4.2 High-level tracking

The particle filter will generate a set of possible vehicle
candidates. The performance of the particle filter will depend
on the number of the particles and the quality of the
discriminability of feature cues. The usage of more particles
and the better cue function may help improve the performance.
This will result in, however, a decrease of the efficiency.

Instead of keeping combination of all hypotheses, we
maintain the vehicle target candidates in a high-level
framework. Without putting lots of particles, we update
each target (track) xi in the high-level framework. Since the
number of targets is usually small (,20), we can update
the target through a more complicated classifier without
bringing heavy computational burden.

Fig. 4 Flow chart of the BSAS
5
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Given clusters St and image It at time t, tracks Tt21 ¼ {x1,
x2, . . ., xk}t21 at the time instance t 2 1, the high-level tracker
can be modelled as maximising a posterior probability
p(Tt|St, It).

max p(T t|St, It) = max(p(St, It|T t)p(T t|T t−1)) (17)

where p(St, It|Tt) stands for the likelihood probability of
cluster set St and image It given tracks Tt, and p(Tt|Tt21) is
the transition probability given tracks at the time instance
t 2 1.

In the high-level tracking module, we maintain each track
(a cluster) with a Kalman filter. We perform data
association between targets and the current generated
particle clusters. The initial likelihood is assigned by a
Gaussian function with input equal to the distance between
targets and the particle clusters. The greater the distance is,
the less the likelihood becomes. Then, the likelihood of
each candidate is updated through a Haar-like feature [32]
classifier from AdaBoost training. If the learnt classifier
return ‘false’, the target will be assigned a small likelihood.
To model the transition probability p(Tt|Tt21), we choose a
constant velocity model.

5 Experiments

In the experiments, a CCD camera is mounted behind the
driving mirror to consecutively grab the images of the road
scene at the driving speed between 30 and 100 km/h. The
grabbed images (320 × 240) are delivered to the mobile
computer equipped with Intelw Pentiumw M 1.4 GHz
processor and 512 MB RAM through IEEE 1394 interface.

The observation stage in the proposed particle filtering
contains four different vision cues, namely, vertical edge
cue, taillight cue, underneath shadow cue and symmetry
cue. The measurement vectors are shown in Fig. 5. Some
examples of special lighting conditions are shown in Fig. 6.
The over exposure, due to high contrast, makes the vertical
edges blur and hardly recognisable; the high-level tracking
6
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strategy gives us a chance to track vehicles even when the
features of the vehicle are obscure.

To show the performance of the data-driven mechanism,
we evaluate the results with and without data-driven
approach. The results are shown in Fig. 7. We use 1800
particles in these results. Without data-driven mechanism,
only two vehicles can be detected in Fig. 7b. In Fig. 8, the
particles are projected to the bird’s-eye-view. Fig. 8a shows
the case with the data-driven mechanism, which helps
particles to converge to the meaningful area; the variance of
the data-driven clusters is less than that without data-driven
mechanism. Without data-driven mechanism, particles
scatter in the state space as shown in Fig. 8b. The analysis

Fig. 6 Special lighting conditions

a Inside a tunnel
b Over exposure

Fig. 7 Comparison of data-driven results

a Data-driven results
b Without data-driven results
Fig. 5 Measurement vectors and the detection result

a Initial sampling
b Vertical edge map
c Original image
d Underneath map
e Taillight map
f Detection result
IET Intell. Transp. Syst., 2012, Vol. 6, Iss. 1, pp. 1–8
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Fig. 8 Comparison of data-driven results

a Data-driven results
b Without data driven
Vertical axis shows the longitudinal distance and the lateral axis shows the lateral distance of the target from the host vehicle
of the clusters is shown in Table 1. Without data-driven
mechanism, particles are attracted by a local maximum;
particles are ‘trapped’ into a huge cluster in the right-hand
side. On the contrary, more particles are found with high-
score targets when the data-driven approach is employed.

For detection rate analysis, we use more than 28 000
images with more than 5000 vehicles within 50 m for several
experiments. The testing videos from highway were classified
into different scenarios. ‘Normal’ condition stands for
bright condition with clear scenes. ‘Through tunnel’ stands
for a video sequence with several tunnels. ‘Under overpass’
and ‘Sunset, forward shadow’ represent different shadow
appearance on the ground. ‘Sprinkle’ and ‘Sunny Rain’
stand for slightly rainy conditions. The details of the
detection result are shown in Table 2. The ‘Hit’ means the
number of correct detection of vehicles and the ‘Miss’
represents the number of false negatives, that is, the number
of missed vehicles. The detection rate of the system is up to
99% at clear scenes, even when the shadow appears on the
ground or the host vehicle changes lane. The performance
will have slightly deterioration in the case of entering into a
tunnel since the blooming effect blurs the vertical edge and
the underneath shadow of the preceding vehicles. In the
special scenes of sunny rain while facing sun, the quality of
the images is even worse. The rain drops on the windshield

Table 1 Data-driven analysis

High-score clusters Cluster variance mean

with data driven 17 0.2834

without data driven 16 0.3280

Table 2 Vehicle detection rate of this system

Hit Miss Detection

rate, %

Precision,

%

normal 473 4 99.37 98.96

through tunnel 685 148 82.35 98.85

left turn, changing lane 765 29 96.47 80.63

under overpass 247 47 84.35 99.26

sunset, forward

shadow

2138 101 95.53 90.22

sprinkle 460 51 90.00 95.04

sunny rain, facing

sun

378 23 94.51 98.44

total 5146 403 92.84 92.42
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refract the light and distorted the preceding vehicles. The
sunshine, when facing the sun, lengthens the shadow of
vehicles and blurs the vertical edges of preceding vehicle,
which causes the degradation of the performance in the last
scene. The high-level tracking in our system gives us a
chance to track the preceding vehicle with short period of
‘missing.’ The overall system performance is 92% detection
rate with 92% precision. In the near future, the performance
will be improved if better vehicle cues for low-light
conditions are sought.

To compare our system with others, we construct
AdaBoost classifiers using Haar-like features [32]. The
AdaBoost classifier is very successful in the face detection
domain. Also, the AdaBoost Classifier is publicly available
in the OpenCV library. Here, about 1500 positive samples,
each of which contains only a vehicle, are chosen from the
MIT LabelMe [33] database for the training phase. At the
same time, 3770 negative samples are selected from our
videos. To reduce the false alarm of the classifier, the
negative samples are selected both from the false detection
results and manually selected road scenes. Totally, 273
weak classifiers are selected to construct a 17-stage
cascaded AdaBoost classifier. The details of the detection
results are shown in Table 3. Due to the lighting condition
variation, the detection result is poor in case of inside a
tunnel, since the classifiers missed all vehicles in the tunnel.
The detection rate is 59.42%, against our 82.35%. In the
cases of ‘Under overpass’ and ‘Sprinkle’, vehicle types
absent from the training samples are usually missed in the
test scenario. The detection rates are 79.11 and 79.84%
against our 84.35 and 90%. The drawback of learning
classifiers is hard to collect good training samples. Under
different lighting conditions, we cannot train a single
classifier with high-detection rate and high precision using
training samples with different lighting conditions; mixture
of different samples will let the classifier compromise
between the day and night thresholds. That means scenes
which appear in fewer training samples will be sacrificed.
On the contrary, our system performance is better than the
AdaBoost classifiers under various conditions.

Table 3 Performance of the AdaBoost classifiers

Hit Miss Detection rate, % Precision, %

through tunnel 495 338 59.42 82.55

under overpass 232 62 79.11 78.47

sprinkle 408 103 79.84 84.98
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The time for processing vehicle detection and tracking of
each frame is less than 48 ms. Since the processing time is
closely related to the number of particles, the standard
deviation of the processing time is small when the particle
number is determined. The details of the processing time
with the number of particles ¼ 100 are shown in Table 4.

6 Conclusions

A statistical framework called particle filter is adopted to
integrate the four cues including vertical edge, underneath
shadow, symmetry and the taillights. By fusing multiple cues
for vehicle detection, our system can achieve high detection
rate under various lighting conditions. Besides the particle
filtering framework, a high-level tracking strategy is
proposed to deal with the image with blurring effect for a
short period. With BSAS clustering technique and initial
data-driven sampling, multiple vehicles can be tracked with
only one set of particles. We maintain the high-level
solutions by assigning each solution a Kalman filter with
constant velocity motion model, and then propagate the
solution to the BSAS input. Multiple objects can be tracked
at the same time in an efficient way. Finally, seven videos are
taken to validate the effectiveness of our system. The
detection rate is 92.84% even under some difficult
environment and various lighting conditions. Compared with
traditional AdaBoost classifier, our system is more reliable
under various lighting conditions. The frame rate of our
proposed system is roughly 20 frames per second. In some
cases, however, the detection results are unsatisfactorily
owing to poor quality of the image. In the future, we will
introduce more cues, learned through online or off-line
mechanisms, to further improve our system performance.
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